Accelerating Scientists’ Knowledge Turns

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 348)


A “knowledge turn” is a cycle of a process by a professional, including the learning generated by the experience, deriving more good and leading to advance. The majority of scientific advances in the public domain result from collective efforts that depend on rapid exchange and effective reuse of results. We have powerful computational instruments, such as scientific workflows, coupled with widespread online information dissemination to accelerate knowledge cycles. However, turns between researchers continue to lag. In particular method obfuscation obstructs reproducibility. The exchange of “Research Objects” rather than articles proposes a technical solution; however the obstacles are mainly social ones that require the scientific community to rethink its current value systems for scholarship, data, methods and software.


Reproducible Research Scientific Workflow Research Object Digital Scholarship Open Science 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adie, E.: Commenting on scientific articles (PLoS edition), (last accessed February 11, 2009)
  2. 2.
    Alsheikh-Ali, A.A., Qureshi, W., Al-Mallah, M.H., Ioannidis, J.P.A.: Public Availability of Published Research Data in High-Impact Journals. PLoS One 6(9) (2011)Google Scholar
  3. 3.
    Baker, M.: Next-generation sequencing: adjusting to data overload. Nature Methods 7, 495–499 (2010)CrossRefGoogle Scholar
  4. 4.
    Bechhofer, S., Buchan, I., et al.: Why linked data is not enough for scientists. Future Generation Computer Systems 29(2), 599–611 (2012), doi:10.1016/j.future.2011.08.004Google Scholar
  5. 5.
    Bhagat, J., Tanoh, F., et al.: BioCatalogue: a universal catalogue of web services for the life sciences. Nucleic Acids Research 38(suppl. 2), W689–W694 (2010)CrossRefGoogle Scholar
  6. 6.
    Borgman, C.L.: The Conundrum of Sharing Research. Journal of the American Society for Information Science and Technology, 1–40 (2011)Google Scholar
  7. 7.
    Chen, B., et al.: Chem2Bio2RDF: a semantic framework for linking data and mining chemogenomic and systems chemical biology data. BMC Bioinformatics 11, 255 (2010)CrossRefGoogle Scholar
  8. 8.
    Ciccarese, P., Wu, E., Wong, G., Ocana, M., Kinoshita, J., Ruttenberg, A., Clark, T.: The SWAN biomedical discourse ontology. J. Biomed. Inform. 41(5), 739–751 (2008)CrossRefGoogle Scholar
  9. 9.
    Clark, T., Kinoshita, J.: Alzforum and SWAN: The Present and Future of Scientific Web Communities. Briefings in Bioinformatics 8(3), 163–171 (2007)CrossRefGoogle Scholar
  10. 10.
    Daub, J., Gardner, P.P., Tate, J., et al.: The RNA WikiProject: Community annotation of RNA families. RNA 14(12), 2462 (2008)CrossRefGoogle Scholar
  11. 11.
    De Roure, D., Goble, C., Stevens, R.: The Design and Realisation of the myExperiment Virtual Research Environment for Social Sharing of Workflows. Future Generation Computer Systems 25(5), 561–567 (2009)CrossRefGoogle Scholar
  12. 12.
    De Roure, D., Bechhofer, S., Goble, C., Newman, D.: Scientific Social Objects: The Social Objects and Multidimensional Network of the myExperiment Website. In: IEEE Third International Conference on Social Computing (socialcom), October 9-11, pp. 1398–1402 (2011), doi:10.1109/PASSAT/SocialCom.2011.245Google Scholar
  13. 13.
    De Roure, D., Belhajjame, K., et al.: Towards the Preservation of Scientific Workflows. In: Proc. 8th Intl. Conf. on Preservation of Digital Objects (2011)Google Scholar
  14. 14.
    Eysenbach, G.: Can Tweets Predict Citations? Metrics of Social Impact Based on Twitter and Correlation with Traditional Metrics of Scientific Impact. J. Med. Internet Res. 2011 13(4), e123 (2012)CrossRefGoogle Scholar
  15. 15.
    Fisher, P., et al.: A systematic strategy for large-scale analysis of genotype–phenotype correlations: identification of candidate genes involved in African trypanosomiasis. Nucleic Acids Research 35(16), 5625–5633 (2007)CrossRefGoogle Scholar
  16. 16.
    Future of Research Communications and e-Scholarship (FORCE 11) Force11 Manifesto (2011), (last accessed February 2, 2012)
  17. 17.
    Galperin, M.Y., Fernandez-Suarez, X.M.: The 2012 Database Issue and the online Molecular Biology Database Collection. Nucleic Acids Research 40(D1), D1–D8 (2012)CrossRefGoogle Scholar
  18. 18.
    Gargouri, Y., Hajjem, C., Larivière, V., et al.: Self-Selected or Mandated, Open Access Increases Citation Impact for Higher Quality Research. PLoS One 5(10) (2010)Google Scholar
  19. 19.
    Gavish, M., Donoho, D.: A universal identifier for computational results. Procedia Computer Science 4, 637–647 (2011)CrossRefGoogle Scholar
  20. 20.
    Giunchiglia, F., ChenuAbente, R.: Scientific Knowledge Objects V.1, Technical Report DISI-09-006, University of Trento (2009)Google Scholar
  21. 21.
    Goecks, J., Nekrutenko, A., Taylor, J.: The Galaxy Team. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11(8), R86 (2010)CrossRefGoogle Scholar
  22. 22.
    Gorp, P.V., Mazanek, S.: Share: a web portal for creating and sharing executable research papers. Procedia Computer Science 4, 589–597 (2011); Proc. Intl. Conf. on Comp. Sci.CrossRefGoogle Scholar
  23. 23.
    Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web: Theory and Technology 1(1), 1–136 (2011)CrossRefGoogle Scholar
  24. 24.
    Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery, Microsoft (2009)Google Scholar
  25. 25.
    Howison, J., Herbsleb, J.D.: Scientific software production: incentives and collaboration. In: Proc. ACM 2011 Conf. Computer Supported Cooperative Work, pp. 513–522 (2011)Google Scholar
  26. 26.
    Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: A tool for building and running workflows of services. Nucleic Acids Research 34(Web Server Issue), 729–732 (2006)CrossRefGoogle Scholar
  27. 27.
    Hull, D., et al.: Defrosting the digital library: bibliographic tools for the next generation web. PLoS Comput. Biol. 4(10), e1000204 (2008)CrossRefGoogle Scholar
  28. 28.
    Hunter, J.: Scientific Publication Packages – A Selective Approach to the Communication and Archival of Scientific Output. Intl. J. of Digital Curation 1(1) (2006)Google Scholar
  29. 29.
    Kell, D.B., Oliver, S.G.: Here is the evidence, now what is the hypothesis? BioEssays 26(1), 99–105 (2004)CrossRefGoogle Scholar
  30. 30.
    Liebowitz, J., Ayyavoo, N., Nguyen, H., Carran, D., Simien, J.: Cross-generational knowledge flows in edge organizations. Industrial Management & Data Systems 107(8), 1123–1153 (2007)CrossRefGoogle Scholar
  31. 31.
    Levison, S.E., et al.: Colonic transcriptional profiling in resistance and susceptibility to Trichuriasis: phenotyping a chronic colitis and lessons for iatrogenic helminthosis. Inflammatory Bowel Diseases 16(12), 2065–2079 (2010)CrossRefGoogle Scholar
  32. 32.
    Lintott, C.J., Schawinski, et al.: Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society 389, 1179–1189 (2008)CrossRefGoogle Scholar
  33. 33.
    Maleki-Dizaji, S., Rolfe, M., Fisher, P., Holcombe, M.: A Systematic Approach to Understanding Bacterial Responses to Oxygen Using Taverna and Webservices. In: 13th International Conference on Biomedical Engineering, pp. 77–80 (2009)Google Scholar
  34. 34.
    Mesirov, J.: Accessible Reproducible Research. Science 327(5964), 415–416 (2010)CrossRefGoogle Scholar
  35. 35.
    McLuhan, M.: Understanding Media: The Extensions of Man. McGraw Hill (1964)Google Scholar
  36. 36.
    Nielson, M.: Reinventing Discovery: The New Era of Networked Science. Princeton University Press (2011)Google Scholar
  37. 37.
    Nature Editorial “Illuminating the black box”. Nature 442, 1 (2006)Google Scholar
  38. 38.
    Nature Editorial “Data’s shameful neglect”. Nature 461, 145 (2009)Google Scholar
  39. 39.
    Nature Genetics Editorial “It’s not about the data”. Nature Genetics 44, 111 (2012)Google Scholar
  40. 40.
    Nature Special Issue on Big Data. Nature 455 (2008)Google Scholar
  41. 41.
    Nowakowski, P., Ciepiela, E., et al.: The collage authoring environment. Procedia Computer Science 4, 608–617 (2011)CrossRefGoogle Scholar
  42. 42.
    Noyes, H., et al.: Genetic and expression analysis of cattle identifies candidate genes in pathways responding to Trypanosoma congolense infection. PNAS 108(22), 9304–9309 (2011)CrossRefGoogle Scholar
  43. 43.
    Orr, J.: One Good Turn, (last accessed January 31, 2012)
  44. 44.
    Pettifer, S., McDermott, P., Marsh, J., Thorne, D., Villeger, A., Attwood, T.K.: Ceci n’est pas un hamburger: modelling and representing the scholarly article. Learned Publishing 24(3), 207–220 (2011)CrossRefGoogle Scholar
  45. 45.
    Rennie, C., Hulme, H., Fisher, P., Halp, L., Agaba, M., Noyes, H., Kemp, S., Brass, A.: A systematic, data-driven approach to the combined analysis of microarray and QTL data. Developments in Biologicals 132, 293–299 (2008)CrossRefGoogle Scholar
  46. 46.
    The Research Information Network. Open science case studies (2010),
  47. 47.
    Sansone, S.-A., et al.: Toward interoperable bioscience data. Nat. Gen. 44, 121–126 (2012)CrossRefGoogle Scholar
  48. 48.
    Schroeder, R.: e-Research Infrastructures and Open Science: Towards a New System of Knowledge Production? Prometheus: Critical Studies in Innovation 25(1), 1–17 (2007)CrossRefGoogle Scholar
  49. 49.
    Shapin, S.: Pump and Circumstance: Robert Boyle’s Literary Technology. Social Studies of Science 14(4), 481–520 (1984)CrossRefGoogle Scholar
  50. 50.
    Shotton, D., Portwin, K., Klyne, G., Miles, A.: Adventures in semantic publishing: exemplar semantic enhancement of a research article. PLoS Comp. Bio. 5(4) (2009)Google Scholar
  51. 51.
    Shotton, D.: CiTO, the Citation Typing Ontology. J. of Biomed. Sem. 1(suppl. 1), S6 (2010)CrossRefGoogle Scholar
  52. 52.
    Shotton, D.: The Five Stars of Online Journal Articles — a Framework for Article Evaluation. D-Lib Magazine 18(1/2) (January/February 2012)Google Scholar
  53. 53.
    Southan, C.: Elixir Database Provider Survey, report from ELIXIR Preparatory Phase (2009), (last accessed January 31, 2011)
  54. 54.
    Sommer, J.: Sage Commons: Josh Sommer, Chordoma Foundation. Video available on,
  55. 55.
    Stodden, V.: The Scientific Method in Practice: Reproducibility in the Computational Sciences. MIT Sloan Research Paper No. 4773-10 (2010), Available at SSRN,, doi:10.2139/ssrn.1550193
  56. 56.
    Van de Sompel, H., et al.: An HTTP-Based Versioning Mechanism for Linked Data. In: Proc. of Linked Data on the Web, LDOW 2010 (2010),
  57. 57.
    Waldrop, M.: Big data: Wikiomics. Nature 455, 22–25 (2008)CrossRefGoogle Scholar
  58. 58.
    Whitfield, J.: Collaboration: Group Theory. Nature 455, 720–723 (2008)CrossRefGoogle Scholar
  59. 59.
    Wolstencroft, K., Owen, S., et al.: RightField: Embedding ontology annotation in spreadsheets. Bioinformatics 27(14), 2012–2022 (2011)CrossRefGoogle Scholar
  60. 60.
    Wroe, C., Goble, C., et al.: Recycling workflows and services through discovery and reuse. Concurrency and Computation: Practice and Experience 19(2), 181–194 (2007)CrossRefGoogle Scholar
  61. 61.
    Wuchty, S., Jones, B.F., Uzzi, B.: The increasing dominance of teams in production of knowledge. Science 316(5827), 1036–1039 (2007)CrossRefGoogle Scholar
  62. 62.
    Yakowitz, J.: Tragedy of the Data Commons. Harvard J. of Law and Tech. 25 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Computer ScienceThe University of ManchesterManchesterU.K.
  2. 2.Oxford e-Research CentreUniversity of OxfordU.K.

Personalised recommendations