Skip to main content

Magnetoresistive Sensors for Surface Scanning

  • Chapter
Giant Magnetoresistance (GMR) Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 6))

Abstract

This chapter provides an overview on several techniques used for surface imaging, including SQUIDs, Hall-effect sensors, Giant magnetoimpedance sensors, and magnetoresistive (MR) sensors. Among all magnetic field sensors, only SQUIDs and MR devices have the potential to localize buried and non-visual field sources (such as defects in integrated circuits or magnetic field sources in biological environments. In particular, we describe how MR sensors have been used with advantage for integrated circuit (IC) mapping, with resolution below 500 nm and sensitivity to detect currents as low as 50 nA and have been used for many applications requiring low magnetic field detection. Challenges and experimental considerations on integration of MR sensors on a commercial analysis tool are provided here. Examples obtained with real devices demonstrate how Scanning Magnetic Microscopy has become an established failure analysis technique for visualizing current paths in microelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dias, R., Skoglund, L., Wang, Z., Smith, D.: Integration of SQUID Microscopy into FA Flow. In: Proc. 27th Int. Symp. Test. and Failure Analysis (ISTFA), pp. 77–81 (2001)

    Google Scholar 

  2. Pacheco, M., Wang, Z.: Scanning SQUID Microscopy for New Package Technologies. In: Proc. 30th Int. Symp. Test. and Failure Analysis (ISTFA), pp. 67–72 (2004)

    Google Scholar 

  3. Felt, F., Knauss, L., Gilbertson, A., Orozco, A.: Istfa Proc. 33rd Int. Symp. Test. and Failure Analysis, pp. 197–205 (2007)

    Google Scholar 

  4. Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H.D., Endo, M., Kana, S., Hayakawa, J., Matsukura, F., Ohno, H.: Nat. Materials 9, 721 (2010)

    Google Scholar 

  5. Smith, C.H., Schneider, R.W., Pohm, A.V.: High-resolution giant magnetoresistance on-chip arrays for magnetic imaging. J. Appl. Phys. 93, 6864 (2003)

    Article  Google Scholar 

  6. Sikora, R., Chady, T., Gratkowski, S., Komorowski, M., Stawicki, K.: Eddy Current Testing of Thick Aluminum Plates with Hidden Cracks. In: AIP Conference Proceedings, vol. 657, p. 427 (2003)

    Google Scholar 

  7. Dogaru, T., Smith, S.T.: Giant magnetoresistance-based eddy-current sensor. IEEE Trans. Magn. 37, 3831 (2001)

    Article  Google Scholar 

  8. Dalichaouch, Y., Singsass, A.L., Putris, F., Perry, A.R., Czipott, P.V.: Low frequency electromagnetic technique for nondestructive evaluation. In: Proc. SPIE, vol. 3994, pp. 2–9 (2000)

    Google Scholar 

  9. Crepel, O., Poirier, P., Descamps, P., Desplats, R., Perdu, P., Haller, G., Firiti, A.: Magnetic Microscopy for IC Failure Analysis: Comparative Case Studies using SQUID, GMR and MTJ systems. Microelectronics Reliability 44, 1559 (2004)

    Article  Google Scholar 

  10. Bajjuri, S., Hoffman, J., Siddoju, A., Meyendorf, N.: Development of GMR eddy current sensors for high temperature applications and imaging of corrosion in thick multi-layer structures. In: Proc. SPIE, vol. 5392, pp. 247–255 (2004)

    Google Scholar 

  11. Kataoka, Y., Wakiwaka, H., Shinoura, O.: Proceedings of Sensors 2002, vol. 2, p. 65. IEEE, Piscataway (2002)

    Google Scholar 

  12. Woods, S.I., Orozco, A., Knauss, L.A.: Advances in Magnetic Current Imaging for Die-Level Fault Isolation. Electr. Device Failure Analysis 8(4), 26–30 (2006)

    Google Scholar 

  13. Martins, V.C., Cardoso, F.A., Germano, J., Cardoso, S., Sousa, L., Piedade, M., Freitas, P.P., Fonseca, L.P.: Femtomolar limit of detection with a magnetoresistive biochip. Biosen. Bioelect. 24, 2690–2695 (2009)

    Article  Google Scholar 

  14. Smith, C., Schneider, B.: Sens. Mag. 18, 11 (2001)

    Google Scholar 

  15. Tee, T.Y., Zhong, Z.: Board level solder joint reliability analysis and optimization of pyramidal stacked die BGA packages. Microelectronics Reliability 44, 1957–1965 (2004)

    Article  Google Scholar 

  16. Hechtl, M., Steckert, G., Keller, C.: Localization of Electrical Shorts in Dies and Packages Using Magnetic Microscopy and Lock-In-IR Thermography. In: Proc. 13th Int. Symp. Phys. and Failure Analysis of Integr. Circuits (IPFA) (2006)

    Google Scholar 

  17. Martin, P., El Matouat, A., Legendre, S., Colder, A., Descamps, P.: Fast and accurate method for flaws localization in stacked die packages from acoustic microscopy echoes transients. In: IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society (2011)

    Google Scholar 

  18. http://www.neocera.com

  19. http://www.micromagnetics.com

  20. Jenksy, W.G., Sadeghiz, S.S.H., Wikswo Jr., J.P.: SQUIDs for nondestructive evaluation. J. Phys. D: Appl. Phys. 30, 293 (1997)

    Article  Google Scholar 

  21. Krause, H.-J., Kreutzbruck, M.V.: Recent developments in SQUID NDE. Physica C 368, 70–79 (2002)

    Article  Google Scholar 

  22. Kirtley, J.R., Wikswo Jr, J.P.: Scanning Squid Microscopy. Annu. Rev. Mater. Sci. 29, 117–148 (1999)

    Article  Google Scholar 

  23. Lee, S.-Y., Matthews, J., Wellstood, F.C.: Position noise in scanning superconducting quantum interference device microscopy. Appl. Phys. Lett. 84, 5001 (2004)

    Article  Google Scholar 

  24. Kirtley, J.R., Ketchen, M.B., Stawiasz, K.G., Sun, J.Z., Gallagher, W.J., Blanton, S.H., Wind, S.J.: High-resolution scanning SQUID microscope. Appl. Phys. Lett. 66, 1138 (1995)

    Article  Google Scholar 

  25. Tsuei, C.C., Kirtley, J.R., Chi, C.C., Yu-Jahnes, L.S., Gupta, A., Shaw, T., Sun, J.Z., Ketchen, M.B.: Pairing Symmetry and Flux Quantization in a Tricrystal Superconducting Ring of YBa2Cu3O7-δ. Phys. Rev. Lett. 73, 593 (1993)

    Article  Google Scholar 

  26. Fong, L.E., Holzer, J.R., McBride, K.K., Lima, E.A., Baudenbacher, F., Radparvar, M.: High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications. Rev. Sci. Instrum. 76, 053703 (2005)

    Article  Google Scholar 

  27. Chatraphorn, S., Fleet, E.F., Wellstood, F.C., Knauss, L.A., Eiles, T.M.: Scanning SQUID microscopy of integrated circuits. Appl. Phys. Lett. 76, 2304 (2000)

    Article  Google Scholar 

  28. Crankshaw, D.S., Trias, E., Orlando, T.P.: Magnetic Flux Controlled Josephson Array Oscillators. IEEE Transactions on Applied Superconductivity II(I), 1223 (2001)

    Article  Google Scholar 

  29. Davidović, D., Kumar, S., Reich, D.H., Siegel, J., Field, S.B., Tiberio, R.C., Hey, R., Ploog, K.: Phys. Rev. Lett. 76, 815 (1996)

    Article  Google Scholar 

  30. Oral, A., Bending, S.J., Henini, M.: Real-time scanning Hall probe microscopy. Appl. Phys. Lett. 69, 1324 (1996)

    Article  Google Scholar 

  31. Heremans, J.: Solid state magnetic field sensors and applications. J. Phys. D Appl. Phys. 26, 1149–1168 (1993)

    Article  Google Scholar 

  32. Boero, G., Demierre, M., Besse, P.-.A., Popovic, R.S.: Micro-Hall devices: performance, technologies and applications. Sensors and Actuators A: Physical 106(1-3), 314–320 (2003)

    Article  Google Scholar 

  33. Sandhu, A., Kurosawa, K., Dede, M., Oral, A.: 50 nm Hall Sensors for Room Temperature Scanning Hall Probe Microscopy. Japanese Journal of Applied Physics 43(2), 777–778 (2004)

    Article  Google Scholar 

  34. Oral, A., Bending, S.J., Henini, M.: Scanning Hall probe microscopy of superconductors and magnetic materials. J. Vac. Sci. Technol. B14, 1202 (1996)

    Article  Google Scholar 

  35. Howells, G.D., Oral, A., Bending, S.J., Andrews, S.R., Squire, P.T., Rice, P., de Lozanne, A., Bland, J.A.C., Kaya, I., Henini, M.: Scanning Hall probe microscopy of ferromagnetic structures. Journal of Magnetism and Magnetic Materials 196-197, 917–919 (1999)

    Article  Google Scholar 

  36. Chang, A.M., Hallen, H.D., Harriott, L., Hess, H.F., Kao, H.L., Kwo, J., Miller, R.E., Wolfe, R., van der Ziel, J., Chang, T.Y.: Scanning Hall probe microscopy. Appl. Phys. Lett. 61, 1974 (1992)

    Article  Google Scholar 

  37. Nguyen Van Dau, F., Schuhl, A., Childress, J.R., Sussiau, M.: Magnetic sensors for nanotesla detection using planar Hall Effect. Sens. Act. A  53, 256–260 (1996)

    Article  Google Scholar 

  38. Dinner, R.B., Beasley, M.R., Moler, K.A.: Cryogenic scanning Hall-probe microscope with centimeter scan range and submicron resolution. Rev. Sci. Instrum. 76, 103702 (2005)

    Article  Google Scholar 

  39. Pross, A., Crisan, A.I., Bending, S.J., Mosser, V., Konczykowski, M.: Second-generation quantum-well sensors for room-temperature scanning Hall probe microscopy. J. Appl. Phys. 97, 096105 (2005)

    Google Scholar 

  40. Schweinböck, T., Weiss, D., Lipinski, M., Eberl, K.: Scanning Hall probe microscopy with shear force distance control. J. Appl. Phys. 87, 6496 (2000)

    Article  Google Scholar 

  41. Sandhu, A., Masuda, H., Senoguchi, H., Togawa, K.: Nanotechnology 15, S410 (2004)

    Google Scholar 

  42. Kirtley, J.R.: A novel variable temperature scanning nano-Hall probe microscope system for large area magnetic imaging incorporating piezoelectric actuators maintained at room temperature. Rep. Prog. Phys. 73, 126501 (2010)

    Article  Google Scholar 

  43. Kustov, M., Laczkowski, P., Hykel, D., Hasselbach, K., D-Bouchiat, F., O’Brien, D., Kauffmann, P., Grechishkin, R., Givord, D., Reyne, G., Cugat, O., Dempsey, N.M.: Magnetic characterization of micropatterned Nd-Fe-B hard magnetic films using scanning Hall probe microscopy. J. Appl. Phys. 108, 63914 (2010)

    Article  Google Scholar 

  44. Cambel, V., Fedor, J., Gregušová, D., Kováč, P., Hušek, I.: Large-scale high-resolution scanning Hall probe microscope used for MgB2 filament characterization. Supercond. Sci. Technol. 18, 417 (2005)

    Article  Google Scholar 

  45. Perkins, G.K., Bugoslavsky, Y.V., Qi, X., MacManus-Driscoll, J.L., Caplin, A.D.: High field scanning Hall probe imaging of high temperature superconductors. IEEE Trans. Appl. Superc. 11(1), 3186–3189 (2001), doi:10.1109/77.919740

    Article  Google Scholar 

  46. Gregory, J.K., Bending, S.J., Sandhu, A.: A scanning Hall probe microscope for large area magnetic imaging down to cryogenic temperatures. Rev. Sci. Instrum. 73, 3515 (2002)

    Article  Google Scholar 

  47. Fedor, J., Cambel, V., Gregušová, D., Hanzelka, P., Dérer, J., Volko, J.: Scanning vector Hall probe microscope. Rev. Sci. Instrum. 74, 5105 (2003)

    Article  Google Scholar 

  48. Phan, M.-H., Peng, H.-X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323–420 (2008)

    Article  Google Scholar 

  49. Beach, R.S., Berkowitz, A.E.: Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Appl. Phys. Lett. 64, 3652 (1994)

    Article  Google Scholar 

  50. Panina, L.V., Mohri, K., Bushida, K., Noda, M.: Giant magneto-impedance and magneto-inductive effects in amorphous alloys. J. Appl. Phys. 76, 6198 (1994)

    Article  Google Scholar 

  51. Panina, L.V., Mohri, K.: Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 65, 1189 (1994)

    Article  Google Scholar 

  52. Ripka, P.: Magnetic sensors and magnetometers. Artech House Publishers (2001)

    Google Scholar 

  53. Goktepe, M., Ege, Y., Bayri, N., Atalay, S.: Non-destructive crack detection using GMI sensor. Phys. Status Solidi (c) 1, 3436–3439 (2004)

    Article  Google Scholar 

  54. Hamia, R., Cordier, C., Saez, S., Dolabdjian, C.: Giant magneto impedance sensor for nondestructive evaluation eddy current system. Sens. Lett. 7, 437–441 (2009)

    Article  Google Scholar 

  55. Tehranchi, M.M., Ranjbaran, M., Eftekhari, H.: A Double core giant magneto-impedance sensors for the inspection of magnetic flux leakage from metal surface cracks. Sensors and Actuators A 170, 55–61 (2011)

    Article  Google Scholar 

  56. Kim, D.J., Park, D.G., Hong, J.H.: Nondestructive evaluation of reactor pressure vessel steels using the giant magnetoimpedance sensor. J. Appl. Phys. 91, 7421–7423 (2002)

    Article  Google Scholar 

  57. Vacher, F., Alves, F., Gilles-Pascaud, C.: Eddy current nondestructive testing with giant magneto-impedance sensor. NDTE Int. 40, 439–442 (2007)

    Article  Google Scholar 

  58. Yamamoto, S.Y., Schultz, S.: Scanning magnetoresistance microscopy. Appl. Phys. Lett. 69, 3263 (1996)

    Article  Google Scholar 

  59. Yamamoto, S.Y., Schultz, S.: Scanning magnetoresistance microscopy (SMRM): Imaging with a MR head. J. Appl. Phys. 81, 4696 (1997)

    Article  Google Scholar 

  60. O’Barr, Lederman, M., Schultz, S.: A scanning microscope using a magnetoresistive head as the sensing element. J. Appl. Phys. 79, 6067 (1996)

    Article  Google Scholar 

  61. Yamamoto, S.Y., Vier, D.C., Schultz, S.: High resolution contact recording and diagnostics with a raster-scanned MR head. IEEE Trans. Magn. 32, 3410 (1996)

    Article  Google Scholar 

  62. So, M.H., Nicholson, P.I., Meydan, T., Moses, A.J.: Magnetic domain imaging in coated silicon-iron using magnetoresistive sensors. IEEE Trans. Magn. 31, 3370 (1995)

    Article  Google Scholar 

  63. Nicholson, P.I., So, M.H., Meydan, T., Moses, A.J.: Non-destructive surface inspection system for steel and other ferromagnetic materials using magneto-resistive sensors. J. Magn. Magn. Mater. 160, 162 (1996)

    Article  Google Scholar 

  64. Smith, C.H., Schneider, R.W., Dogaru, T., Smith, S.T.: Eddy-Current Testing with GMR Magnetic Sensor Arrays. In: AIP Conf. Proc., vol. 700, pp. 406–413.

    Google Scholar 

  65. Postolache, O., Ribeiro, A.L., Ramos, H.: Uniform eddy current probe implementation using planar excitation coil and GMR sensor array. In: Proceedings IMEKO TC4 (2011)

    Google Scholar 

  66. Yashan, A., Bisle, W., Meier, T.: Inspection of hidden defects in metal-metal joints of aircraft structures using eddy current technique with GMR sensor array. In: Proc. 9th ECNDT, Berlin (2006)

    Google Scholar 

  67. Vacher, F., Gilles-pascaud, C., Decitre, J.M., Fermon, C., Pannetier, M.: Non destructive testing with GMR magnetic sensor arrays. In: Proc. 9th ECNDT, Berlin (2006)

    Google Scholar 

  68. Vyhnánek, J., Janošek, M., Ripka, P.: AMR gradiometer for mine detection. Sensors and Actuators A 186, 100–104 (2012)

    Article  Google Scholar 

  69. Janosek, M., Vyhnanek, J., Ripka, P.: CW metal detector based on AMR sensor array. Sensors 28-31, 1515–1517 (2011)

    Google Scholar 

  70. Holzl, C.H.P.A., Wiesner, T., Zagar, B.G.: Quality assurance for wire connections used in integrated circuits via magnetic imaging. In: 2012 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (2012)

    Google Scholar 

  71. Phillips, G.N., Eisenberg, M., Draaisma, E.A., Abelmann, L., Lodder, J.C.: IEEE Transactions on Magnetics 38 (2002)

    Google Scholar 

  72. Cano, M.E., Martínez, J.C., Bernal-Alvarado, J., Sosa, M., Córdova, T.: 16-channel magnetoresistive scanner for magnetic surface imaging. Rev. Sci. Instrum. 76, 086106 (2005)

    Google Scholar 

  73. Tumanski, S., Liszka, A.: The methods and devices for scanning of magnetic fields. Journal of Magnetism and Magnetic Materials 242–245, 1253–1256 (2002)

    Article  Google Scholar 

  74. Cano, M.E., Pacheco, A.H., Cordova, T., Mazon, E.E., Barrera, A.: Superficial magnetic imaging by an xy-scanner of three magnetoresistive channels. Rev. Sci. Instrum. 83, 033705 (2012)

    Article  Google Scholar 

  75. Mook, G., Michel, F., Simonin, J.: Electromagnetic Imaging Using Probe Arrays. Journal of Mechanical Engineering 57(3), 227–236 (2011)

    Article  Google Scholar 

  76. Pohm, A.V., Beech, R.S., Bade, P.A., Chen, E.Y., Daughton, J.M.: Analysis of 0.1 to 0.3 micron wide, ultra dense GMR memory elements. IEEE Trans. Mag. 6(30), 4650–4652 (1994)

    Article  Google Scholar 

  77. Baselt, D.R., Lee, G.U., Natesan, M., Metzger, S.W., Sheehan, P.E., Colton, R.J.: Biosensors & Bioelectronics 13, 731–739 (1998)

    Article  Google Scholar 

  78. Han, S.-J., Xu, L., Yu, H., Wilson, R.J., White, R.L., Pourmand, N., Wang, S.X.: CMOS Integrated DNA Microarray Based on GMR Sensors. In: International Electron Devices Meeting (IEDM 2006) (2006)

    Google Scholar 

  79. Freitas, P.P., Cardoso, F.A., Martins, V.C., Martins, S.A.M., Loureiro, J., Amaral, J., Chaves, R.C., Cardoso, S., Germano, J., Piedade, M.S., Sebastião, A.M., Fonseca, L.F., Pannetier-Lecoeur, M., Fermon, C.: Spintronic platforms for biomedical applications. Lab-on-Chip 12(3), 546–557 (2012)

    Article  Google Scholar 

  80. Gaster, R.S., Xu, L., Han, S.-J., Wilson, R.J., Hall, D.A., Osterfeld, S.J., Yu, H., Wang, S.X.: Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nature Nanotechnology 6, 314–320 (2011)

    Article  Google Scholar 

  81. Indeck, R.S., Judy, J.H., Iwasaki, S.: A magnetoresistive gradiometer. IEEE Trans. Mag. 6(24), 2617–2619 (1988)

    Article  Google Scholar 

  82. Pelkner, M., Neubauer, A., Reimund, V., Kreutzbruck, M., Schütze, A.: Routes for GMR-Sensor Design in Non-Destructive Testing. Sensors 12(9), 12169–12183 (2012)

    Article  Google Scholar 

  83. Kreutzbruck, M., Neubauer, A., Pelkner, M., Reimund, V.: Adapted GMR Array used in Magnetic Flux Leakage Inspection: 18th World Conference on Nondestructive Testing, Durban, South Africa, April 16-20 (2012)

    Google Scholar 

  84. Kloster, A., Kröning, M., Smorodinsky, J., Ustinov, V.: Linear magnetic stray flux array based on GMR gradiometers. In: Indian Society for Non-Destructive Testing (NDE 2002), ISNT Chapters in Chennai, Kalpakkam & Sriharikota, December 5-7 (2002), http://publica.fraunhofer.de/documents/N-31528.html

  85. Nakamura, M., Kimura, M., Sueoka, K., Mukasa, K.: Scanning magnetoresistance microscopy with a magnetoresistive sensor cantilever. Appl. Phys. Lett. 80, 2713–2715 (2002)

    Article  Google Scholar 

  86. Takezaki, T., Yagisawa, D., Sueoka, K.: Magnetic Field Measurement using Scanning Magnetoresistance Microscope with Spin-Valve Sensor. Jap. J. Appl. Phys. 45, 2251–2254 (2006)

    Article  Google Scholar 

  87. Sahoo, D.R., Sebastian, A., Häberle, W., Pozidis, H., Eleftheriou, E.: Scanning probe microscopy based on magnetoresistive sensing. Nanotechnology 22, 145501 (2011), doi:10.1088/0957-4484/22/14/145501

    Article  Google Scholar 

  88. Knauss, L.A., Frazier, B.M., Christen, H.M., Silliman, S.D., Harshavardhan, K.S., Fleet, E.F., Wellstood, F.C., Mahanpour, M., Ghaemmaghami, A.: Power Shorts from Front and Backside of IC Packages Using Scanning SQUID Microscopy. In: ISTFA 1999: Proceedings of the 25th International Symposium for Testing and Failure Analysis (ASM International), pp. 11–16 (October 1999)

    Google Scholar 

  89. Wikswo, J.P.: The Magnetic Inverse Problem for NDE. In: SQUID Sensors: Fundamentals, Fabrication and Applications, pp. 629–695. Kluwer Academic Publishers, The Netherlands (1996)

    Chapter  Google Scholar 

  90. Xie, M., Qian, Z., Pacheco, M., Wang, Z., Dias, R., Talanov, V.: Fault Isolation of Open Defects Using Space Domain Reflectometry. In: Proc. 38th Int. Symp. Test. and Failure Analysis, Phoenix, AZ (2012)

    Google Scholar 

  91. Vallett, D.P., Bader, D.A., Talanov, V.V., Gaudestad, J., Gagliolo, N., Orozco, A.: Localization of Dead Open in a Solder Bump by Space Domain Reflectometry. In: Proc. 38th Int. Symp. Test. and Failure Analysis, Phoenix, AZ (2012)

    Google Scholar 

  92. Eng, T.T., Lwin, H.E., Muthu, P., Chin, J.M.: Backside Deprocessing Technique & Its Novel Fault Isolation Application. In: Proc. 12th IPFA, pp. 110–113 (2005)

    Google Scholar 

  93. Woods, S.I., Knauss, L.A., Orozco, A.: Current Imaging Using Magnetic Field Sensors. In: Microelectronics Failure Analysis Desk Reference, 5th edn., pp. 303–311. ASM International (2005)

    Google Scholar 

  94. Orozco, A., et al.: Proc. 29th Int. Symp. Test. and Failure Analysis, Santa Clara, CA, pp. 9–13 (2003)

    Google Scholar 

  95. Orozco, A.: Fault Isolation of Circuit Defects Using Comparative Magnetic Field Imaging, U.S. Patent 7,019,521

    Google Scholar 

  96. Crepel, O., Descamps, P., Poirier, P., Desplants, R., Perdu, P., Firiti, A.: Proc. 30th Int. Symp. Test. and Failure Analysis, Worcester, MA, pp. 29–31 (2004)

    Google Scholar 

  97. Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 61, 2472 (1988)

    Article  Google Scholar 

  98. Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828 (1989)

    Article  Google Scholar 

  99. Schrag, B.D., Carter, M.J., Liu, X., Hoftun, J.S., Xiao, G.: Magnetic current imaging with tunnel junction sensors. In: Proc. ISTFA, p. 13 (2006)

    Google Scholar 

  100. Hechtl, M.: Backside GMR Magnetic Microscopy for Flip Chip and Related Microelectronic Devices. IEEE Proceedings of 15th IPFA – 2008, 174–177 (2008)

    Google Scholar 

  101. Orozco, A.: Magnetic Current Imaging in Failure Analysis. Electronic Device Failure Analysis 11, 14–21 (2009)

    Google Scholar 

  102. da Silva, F.C., Halloran, S.T., Kos, A.B., Pappas, D.P.: 256-channel magnetic imaging system. Rev. Sci. Instrum. 79, 013709 (2008)

    Article  Google Scholar 

  103. Tondra, M., Nordman, C.A., Lang, E.H., Reed, D., Jander, A., Akou, S., Daughton, J.M.: Proc. SPIE, vol. 4393, p. 135 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Leitão .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leitão, D.C., Borme, J., Orozco, A., Cardoso, S., Freitas, P.P. (2013). Magnetoresistive Sensors for Surface Scanning. In: Giant Magnetoresistance (GMR) Sensors. Smart Sensors, Measurement and Instrumentation, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37172-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37172-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37171-4

  • Online ISBN: 978-3-642-37172-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics