Towards a Secure Multivariate Identity-Based Encryption

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 207)

Abstract

We investigate the possibilities of building a Multivariate Identity-Based Encryption (IBE) Scheme, such that for each identity the obtained Public Key Encryption Scheme is Multivariate Quadratic (MQ). The biggest problem in creating an IBE with classical MQ properties is the possibility of collusion of polynomial number of users against the master key or the keys of other users. We present a solution that makes the collusion of polynomial number of users computationally infeasible, although still possible. The proposed solution is a general model for a Multivariate IBE Scheme with exponentially many public-private keys that are instances of an MQ public key encryption scheme.

Keywords

Identity-Based Encryption (IBE) Public Key Encryption Schemes Multivariate Quadratic Schemes (MQ schemes) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Albrecht, M.R., Paterson, K.G.: Breaking an Identity-Based Encryption Scheme Based on DHIES. In: Chen, L. (ed.) Cryptography and Coding 2011. LNCS, vol. 7089, pp. 344–355. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS 2007, pp. 647–657 (2007)Google Scholar
  6. 6.
    Chen, Y., Charlemagne, M., Guan, Z., Hu, J., Chen, Z.: Identity-based encryption based on DHIES. In: ASIACCS 2010, pp. 82–88. ACM (2010)Google Scholar
  7. 7.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Di Crescenzo, G., Saraswat, V.: Public key encryption with searchable keywords based on Jacobi symbols. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 282–296. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)Google Scholar
  10. 10.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206. ACM (2008)Google Scholar
  12. 12.
    Huang, Y.-J., Liu, F.-H., Yang, B.-Y.: Public-Key Cryptography from New Multivariate Quadratic Assumptions. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 190–205. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) Advances in Cryptology - CRYPT0 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  14. 14.
    Sakumoto, K., Shirai, T., Hiwatari, H.: Public-Key Identification Schemes Based on Multivariate Quadratic Polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 706–723. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Samardjiska, S., Gligoroski, D.: Identity-Based Identification Schemes Using Left Multivariate Quasigroups. In: NISK 2011, Tapir, pp. 19–30 (2011)Google Scholar
  16. 16.
    Samardjiska, S., Gligoroski, D.: Left MQQs whose left parastrophe is also quadratic. Commentat. Mathematicae Un. Carolinae. 53(3), 397–421 (2012)MathSciNetMATHGoogle Scholar
  17. 17.
    Susilo, W., Baek, J.: On the Security of the Identity-based Encryption based on DHIES from ASIACCS 2010. In: ASIACCS 2011, pp. 376–380. ACM (2011)Google Scholar
  18. 18.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Wolf, C., Preneel, B.: MQ*-IP: An Identity-based Identification Scheme without Number-theoretic Assumptions. Cryptology ePrint Archive, 2010/087 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of TelematicsNTNUTrondheimNorway

Personalised recommendations