Abstract
The geophysical inversion of gravity anomalies is experimented using the application GMI based on the algorithm CLEAR, run in parallel systems. Parallelization is done using both OpenMP and MPI. The scalability in time domain of the iterative process of inversion is analyzed, comparing previously reported results based in OpenMP with recent data from tests with MPI. The runtime for small models was not improved with the increase of the number of processing cores. The increase of user runtime due to the size of the model resulted faster for MPI compared with OpenMP and for big models the latter would offer better runtime. Walltime scalability in multi-user systems did not improved with the increase of processing cores as result of time sharing. Results confirm the scalability of the runtime at the order of O(N8) relative to the linear size N of 3D models, while the impact of increasing the number of involved cores remains disputable when walltime is considered. Walltime upper limit for modest resolution 3D models with 41*41*21 nodes was 105 seconds, suggesting the need of using MPI in multi-cluster systems and of GPUs for better resolution. The results are in framework of FP7 Infrastructure project HP-SEE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sen, M., Stoffa, P.: Global Optimization Methods in Geophysical Inversion. Elsevier Science B.V. (1995)
Hadamard, J.: Sur les prolemes aux derivees partielles et leur signification physique, vol. 13, pp. 1–20. Bull Princeton Univ. (1902)
Shamsipour, P., Chouteau, M., Marcotte, D., Keating, P.: 3D stochastic inversion of borehole and surface gravity data using Geostatistics. In: EGM 2010 International Workshop, Adding New Value to Electromagnetic, Gravity and Magnetic Methods for Exploration Capri, Italy, April 11-14 (2010)
Silva, J., Medeiros, W.E., Barbosa, V.C.F.: Gravity inversion using convexity constraint. Geophysics 65(1), 102–112 (2000)
Zhou, X.: 3D vector gravity potential and line integrals for the gravity anomaly of a rectangular prism with 3D variable density contrast. Geophysics 74(6), 143–153 (2009)
Zhou, X.: Analytic solution of the gravity anomaly of irregular 2D masses with density contrast varying as a 2D polynomial function. Geophysics 75(2), 11–19 (2010)
Wellmann, F.J., Horowitz, F.G., Schill, E., Regenauer-Lieb, K.: Towards incorporating uncertainty of structural data in 3D geological inversion. Elsevier Tectonophysics TECTO-124902 (2010), http://www.elsevier.com/locate/tecto (accessed September 07, 2010)
Frasheri, N., Cico, B.: Analysis of the Convergence of Iterative Geophysical Inversion in Parallel Systems. In: Kocarev, L. (ed.) ICT Innovations 2011. AISC, vol. 150, pp. 219–226. Springer, Heidelberg (2012)
Frasheri, N., Bushati, S.: An Algorithm for Gravity Anomaly Inversion in HPC. In: Frasheri, N., Bushati, S. (eds.) SYNASC 2011 - 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, September 26-29 (2011)
Frasheri, N., Cico, B.: Convergence of Gravity Inversion using OpenMP. In: Information Technologies IT 2012, Zabljak Montenegro, February 27-March 02 (2012)
Rickwood, P., Sambridge, M.: Efficient parallel inversion using the Neighborhood Algorithm. Geochemistry Geophysics Geosystems Electronic Journal of the Earth Sciences 7(11) (November 1, 2006)
Loke, M.H., Wilkinson, P.: Rapid Parallel Computation of Optimized Arrays for Electrical Imaging Surveys. In: Loke, M.H., Wilkinson, P. (eds.) Near Surface 2009 – 15th European Meeting of Environmental and Engineering Geophysics, Dublin, Ireland, September 7-9 (2009)
Hu, Z., He, Z., Wang, Y., Sun, W.: Constrained inversion of magnetotelluric data using parallel simulated annealing algorithm and its application. In: SEG Denver Annual Meeting 2010 – SEG Expanded Abstracts. EM P4 Modeling and Inversion, vol. 29 (2010)
Wilson, G., Čuma, M., Zhdanov, M.S.: Massively parallel 3D inversion of gravity and gravity gradiometry data. PREVIEW - The Magazine of the Australian Society of Exploration Geophysicists (June 2011)
Lowrie, W.: Fundamentals of Geophysics. Cambridge University Press (2007)
Högbom, J.A.: Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines. Astr. Astrophys. Suppl. 15, 417 (1974)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Frasheri, N., Çiço, B. (2013). Scalability of Gravity Inversion with OpenMP and MPI in Parallel Processing. In: Markovski, S., Gusev, M. (eds) ICT Innovations 2012. ICT Innovations 2012. Advances in Intelligent Systems and Computing, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37169-1_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-37169-1_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37168-4
Online ISBN: 978-3-642-37169-1
eBook Packages: EngineeringEngineering (R0)