Diatom Indicating Property Discovery with Rule Induction Algorithm

  • Andreja NaumoskiEmail author
  • Kosta Mitreski
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 207)


In the relevant literature the diatoms have ecological preference organized using rule, which takes into account the important influencing physical-chemical parameters on the diatom abundance. Influencing parameters group typically consist from parameters like: conductivity, saturated oxygen, pH, Secchi Disk, Total Phosphorus and etc. In this direction, this paper aims in process of building diatom classification models using two proposed dissimilarity metrics with predictive clustering rules to discover the diatom indicating properties. The proposed metrics play important rule in this direction as it is in every aspects of the estimating quality of the rules, from dispersion to prototype distance and thus lead to increasing the classification descriptive/predictive accuracy. We compare the proposed metrics by classification and rule quality metrics and based on the results, several set of rules for each WQ and TSI category classes are presented, discussed and verified with the known ecological reference found in the diatom literature.


Predictive clustering rules accuracy water quality category classes diatoms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  2. 2.
    Flach, P., Lavrač, N.: Rule induction. In: Intelligent Data Analysis, 2nd edn., pp. 229–267. Springer, Berlin (2003)CrossRefGoogle Scholar
  3. 3.
    Michalski, R.: On the quasi-minimal solution of the general covering problem. In: Proceedings of the Fifth International Symposium on Information Processing (FCIP 1969), Switching Circuits, Bled, Yugoslavia, vol. A3, pp. 125–128 (1969)Google Scholar
  4. 4.
    Michalski, R.S.: An Artificial Intelligence Approach. In: Understanding the Nature of Learning, vol. II, pp. 3–26. Morgan Kaufmann (1986)Google Scholar
  5. 5.
    Niblett, P., Clark, T.: The CN2 induction algorithm. Machine Learning 3(4), 261–283 (1989)Google Scholar
  6. 6.
    Boswell, P.: Rule induction with CN2: Some recent improvements. In: Proceedings of the Fifth European Working Session on Learning, pp. 151–163 (1991)Google Scholar
  7. 7.
    Blockeel, H.: Top-down Induction of First Order Logical Decision Trees. PhD thesis. Katholieke Universiteit Leuven, Department of Computer Science, Leuven, Belgium (1998)Google Scholar
  8. 8.
    Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: Proceedings of the Fifteenth International Conference on Machine Learning (ICML 1998), San Francisco, CA, USA, pp. 55–63 (1998)Google Scholar
  9. 9.
    Zenko, B.: Learning predictive clustering rules. University of Ljubljana, Faculty of Computer and Information Science. Ljubljana, Slovenia (2007)Google Scholar
  10. 10.
    Reid, M., Tibby, J., Penny, D., Gell, P.: The use of diatoms to assess past and present water quality, pp. 57–64 (1995)Google Scholar
  11. 11.
    Kononenko, I., Bratko, I.: Information-based evaluation criterion for classifier’s performance. Machine Learning 6(1), 67–80 (1991)Google Scholar
  12. 12.
    Levkov, Z., Krstic, S.: Diatoms of Lakes Prespa and Ohrid (Macedonia). Iconographia Diatomologica, vol. 16, p. 603 (2006)Google Scholar
  13. 13.
    Krstić, S.: Description of sampling sites (2005)Google Scholar
  14. 14.
    Krammer, K., Lange-Bertalot, H.: Bacillariophyceae. 1. Teil: Naviculaceae. [Bacillariophyceae. 1. Part: Naviculaceae]. In: Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (eds.) Süsswasser Flora von Mitteleuropa, Band 2/1, p. 876. Gustav Fischer Verlag, Stuttgart (1986)Google Scholar
  15. 15.
    Van Der Werff, A., Huls, H.: Diatomeanflora van Nederland [Diatom flora in Netherlands]. Abcoude - De Hoef (1957, 1974)Google Scholar
  16. 16.
    García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of nonparametric tests for analyzing the evolutionary algorithms behaviour: A case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics 15, 617–644 (2009)zbMATHCrossRefGoogle Scholar
  17. 17.
    Van Dam, H., Mertens, A.: A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28(1), 117–133 (1994)CrossRefGoogle Scholar
  18. 18.
    Gold, C.: Field transfer of periphytic diatom communities to assess shortterm structural effects of metals (Cd Zn) in rivers. Water Research 36, 3654–3664 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Computers Science and EngineeringSs. Cyril and Methodius University in SkopjeSkopjeMacedonia

Personalised recommendations