On the Strong and Weak Keys in MQQ-SIG

  • Håkon Jacobsen
  • Simona Samardjiska
  • Danilo Gligoroski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 207)

Abstract

In this paper we describe a methodology for identifying strong and weak keys in the recently introduced multivariate public-key signature scheme MQQ-SIG. We have conducted a large number of experiments based on Gröbner basis attacks, in order to classify the various parameters that determine the keys in MQQ-SIG. Our findings show that there are big differences in the importance of these parameters. The methodology consists of a classification of different parameters in the scheme, together with introduction of concrete criteria on which keys to avoid and which to use. Finally, we propose an enhanced key generation algorithm for MQQ-SIG that generates stronger keys and will be more efficient than the original key generation method.

Keywords

Multivariate Cryptography Multivariate Quadratic Quasigroups MQQ-SIG Quasigroup String Transformations Public-Key Cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bosma, W., Cannon, J.J., Fieker, C., Steel, A.: Handbook of Magma functions. Computational Algebra Group, School of Mathematics and Statistics, University of Sydney, 2.17-3 edn. (2010)Google Scholar
  2. 2.
    Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University of Innsbruck (1965)Google Scholar
  3. 3.
    Chen, Y., Knapskog, S.J., Gligoroski, D.: Multivariate quadratic quasigroups (MQQ): Construction, bounds and complexity. In: Inscrypt - 6th International Conference, Shanghai, China. Science Press of China (October 2010)Google Scholar
  4. 4.
    Courtois, N., Goubin, L., Meier, W., Tacier, J.-D.: Solving underdefined systems of multivariate quadratic equations. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 211–227. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra 139(1-3), 61–88 (1999)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Galbraith, S.D.: Supersingular curves in cryptography. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 495–513. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Gligoroski, D., Ødegård, R.S., Jensen, R.E., Perret, L., Faugère, J.-C., Knapskog, S.J., Markovski, S.: MQQ-SIG, an ultra-fast and provably CMA resistant digital signature scheme. In: Chen, L., Yung, M., Zhu, L. (eds.) INTRUST 2011. LNCS, vol. 7222, pp. 184–203. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Håkon Jacobsen
    • 1
  • Simona Samardjiska
    • 1
  • Danilo Gligoroski
    • 1
  1. 1.Department of TelematicsNTNUTrondheimNorway

Personalised recommendations