Emotion-Aware Recommender Systems – A Framework and a Case Study

  • Marko TkalčičEmail author
  • Urban Burnik
  • Ante Odić
  • Andrej Košir
  • Jurij Tasič
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 207)


Recent work has shown an increase of accuracy in recommender systems that use emotive labels. In this paper we propose a framework for emotion-aware recommender systems and present a survey of the results in such recommender systems. We present a consumption-chain-based framework and we compare three labeling methods within a recommender system for images: (i) generic labeling, (ii) explicit affective labeling and (iii) implicit affective labeling.


recommender systems emotion detection multimedia con-sumption chain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartlett, M.S., Littlewort, G.C., Frank, M.G., Lainscsek, C., Fasel, I.R., Movellan, J.R.: Automatic Recognition of Facial Actions in Spontaneous Expressions. Journal of Multimedia 1(6), 22–35 (2006)CrossRefGoogle Scholar
  2. 2.
    Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A Survey of Lightweight-Cryptography Implementations. IEEE Des. Test 24(6), 522–533 (2007)CrossRefGoogle Scholar
  3. 3.
    Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry 25(1), 49–59 (1994)CrossRefGoogle Scholar
  4. 4.
    Ekman, P.: Facial expression and emotion. American Psychologist 48(4), 384 (1993)CrossRefGoogle Scholar
  5. 5.
    Ekman, P.: Basic Emotions. In: Handbook of Cognition and Emotion, pp. 45–60 (1999)Google Scholar
  6. 6.
    Herlocker, J.L., Konstan, J.A., Terveen, L., Riedl, J.A.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  7. 7.
    Ioannou, S.V., Raouzaiou, A.T., Tzouvaras, V., Mailis, T.P., Karpouzis, K.C., Kollias, S.D.: Emotion recognition through facial expression analysis based on a neurofuzzy network. Neural Networks: The Official Journal of the International Neural Network Society 18(4), 423–435 (2005)CrossRefGoogle Scholar
  8. 8.
    Jaimes, A., Sebe, N.: Multimodal human computer interaction: A survey. Computer Vision and Image Understanding 108(1-2), 116–134 (2007)CrossRefGoogle Scholar
  9. 9.
    Kahneman, D.: A perspective on judgment and choice: mapping bounded rationality. The American Psychologist 58(9), 697–720 (2003)CrossRefGoogle Scholar
  10. 10.
    Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression analysis. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–53 (2000)Google Scholar
  11. 11.
    Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical report, University of Florida (2005)Google Scholar
  12. 12.
    Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer Texts in Statistics. Springer, New York (2005)Google Scholar
  13. 13.
    Mehrabian, A.: Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament. Current Psychology 14(4), 261–292 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pantic, M., Vinciarelli, A.: Implicit human-centered tagging Social Sciences. IEEE Signal Processing Magazine 26(6), 173–180 (2009)CrossRefGoogle Scholar
  15. 15.
    Posner, J., Russell, J., Peterson, B.S.: The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology 17(3), 715–734 (2005)CrossRefGoogle Scholar
  16. 16.
    Tkalčič, M., Burnik, U., Košir, A.: Using affective parameters in a content-based recommender system for images. User Modeling and User-Adapted Interaction 20(4), 279–311 (2010)CrossRefGoogle Scholar
  17. 17.
    Tkalčič, M., Odić, A., Košir, A., Tasič, J.: Comparison of an Emotion Detection Technique on Posed and Spontaneous Datasets. In: Proceedings of the 19th ERK Conference, Portorož (2010)Google Scholar
  18. 18.
    Tkalčič, M., Tasič, J., Košir, A.: The LDOS-PerAff-1 Corpus of Face Video Clips with Affective and Personality Metadata. In: Proceedings of Multimodal Corpora: Advances in Capturing, Coding and Analyzing Multimodality LREC, p. 111 (2009)Google Scholar
  19. 19.
    Valenti, R., Yucel, Z., Gevers, Z.: Robustifying eye center localization by head pose cues. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 612–618 (2009)Google Scholar
  20. 20.
    Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions. IEEE Trans. Pattern Analysis & Machine Intelligence 31, 39–58 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marko Tkalčič
    • 1
    Email author
  • Urban Burnik
    • 1
  • Ante Odić
    • 1
  • Andrej Košir
    • 1
  • Jurij Tasič
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations