Stability Analysis of Impulsive Stochastic Cohen-Grossberg Neural Networks with Mixed Delays

  • Biljana TojtovskaEmail author
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 207)


For impulsive stochastic Cohen-Grossberg neural networks with mixed time delays, we study in the present paper pth moment (p ≥ 2) stability on a general decay rate. Using the theory of Lyapunov function, M-matrix technique and some famous inequalities we generalize and improve some known results referring to the exponential stability. The presented theory allows us to study the pth moment stability even if the exponential stability cannot be shown. Some examples are presented to support and illustrate the theory.


Impulsive stochastic neural networks moment stability analysis general decay function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    von Neumann, J.: The computer and the brain. Yale University Press, New Haven (1958)zbMATHGoogle Scholar
  2. 2.
    Taylor, J.G.: Spontaneous behaviour in neural networks. J. Theor. Biol. 36(3), 513–528 (1972)CrossRefGoogle Scholar
  3. 3.
    Sejnowski, T.J.: Skeleton filters in the brain. In: Hinton, G.E., Anderson, J.A. (eds.) Parallel Models of Associative Memory, Hillsdale LEE, New Jersey, pp. 189–208 (1981)Google Scholar
  4. 4.
    Arbib, M.A.: Brains, Machines, and Mathematics. Springer, New York (1987)zbMATHCrossRefGoogle Scholar
  5. 5.
    Huang, C., He, Y., Chen, P.: Dynamic analysis of stochastic recurrent neural networks. Neural Process. Lett. 27, 267–276 (2008)CrossRefGoogle Scholar
  6. 6.
    Huang, C., Cao, J.: Stochastic dynamics of nonautonomous - Grossberg neural networks. Abstract Appl. Anal. Article ID 297147 (2011)Google Scholar
  7. 7.
    Wang, X., Guo, Q., Xu, D.: Exponential p-stability of impulsive stochastic Cohen-Grossberg neural networks with mixed delays. Math. Comput. Simul. 79(5), 1698–1710 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Peng, S., Zhang, Y.: Razumikhin-type theorems on pth moment exponential stability of impulsive stochastic delay differential equations. IEEE Transactions on Automatic Control 55(8), 1917–1922 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Randjelović, J., Janković, S.: On the pth moment exponential stability criteria of neutral stochastic functional differential equations. J. Math. Anal. Appl. 326, 266–280 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Pavlović, G., Janković, S.: Razumikhin-type theorems on general decay stability of stochastic functional differential equations with infinite delay. J. Comp. Appl. Math. 236, 1679–1690 (2012)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hu, Y., Huang, C.: Lasalle method and general decay stability of stochastic neural networks with mixed delays. J. Appl. Math. Computing 38(1-2), 257–278 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tojtovska, B., Jankovič, S.: On a general decay stability of stochastic Cohen-Grossberg neural networks with time-varying delays. Appl. Math. Comput. 219 (2012)Google Scholar
  13. 13.
    Yegnanarayana, B.: Artificial neural networks. PHI Learning Pvt. Ltd. (2004)Google Scholar
  14. 14.
    Mao, X.: Stochastic differential equations and applications, 2nd edn. Horwood Publishing, Chichester (2007)zbMATHGoogle Scholar
  15. 15.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1990)Google Scholar
  16. 16.
    Song, Q., Wang, Z.: Stability analysis of impulsive stochastic Cohen-Grossberg neural networks with mixed time delays. Physica A 387, 3314–3326 (2008)CrossRefGoogle Scholar
  17. 17.
    Xu, D., Yang, Z.: Impulsive delay differential inequality and stability of neural networks. J. Math. Anal. Appl. 305(1), 107–120 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Computer Science and EngineeringSs. Cyril and Methodius UniversitySkopjeMacedonia

Personalised recommendations