Abstract
In this paper we discuss cone-based hypervolume indicators (CHI) that generalize the classical hypervolume indicator (HI) in Pareto optimization. A family of polyhedral cones with scalable opening angle γ is studied. These γ-cones can be efficiently constructed and have a number of favorable properties. It is shown that for γ-cones dominance can be checked efficiently and the CHI computation can be reduced to the computation of the HI in linear time with respect to the number of points μ in an approximation set. Besides, individual contributions to these can be computed using a similar transformation to the case of Pareto dominance cones.
Furthermore, we present first results on theoretical properties of optimal μ-distributions of this indicator. It is shown that in two dimensions and for linear Pareto fronts the optimal μ-distribution has uniform gap. For general Pareto curves and γ approaching zero, it is proven that the optimal μ-distribution becomes equidistant in the Manhattan distance. An important implication of this theoretical result is that by replacing the classical hypervolume indicator by CHI with γ-cones in hypervolume-based algorithms, such as the SMS-EMOA, the distribution can be shifted from a distribution that is focussed more on the knee point region to a distribution that is uniformly distributed. This is illustrated by numerical examples in 2-D. Moreover, in 3-D a similar dependency on γ is observed.
Keywords
- Hypervolume Indicator
- Cone-based Hypervolume Indicator
- Optimal μ-distribution
- Complexity
- Cone-orders
- SMS-EMOA
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point. In: FOGA 2009, pp. 87–102. ACM, NY (2009)
Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation 19(1), 45–76 (2011)
Batista, L.S., Campelo, F., Guimarães, F.G., Ramírez, J.A.: Pareto cone -dominance: Improving convergence and diversity in multiobjective evolutionary algorithms. In: Takahashi, et al. (eds.) [18], pp. 76–90
Billingsley, P.: Probability and Measure, 3rd edn. Wiley (1995)
Bringmann, K., Friedrich, T.: Approximating the Least Hypervolume Contributor: NP-Hard in General, But Fast in Practice. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 6–20. Springer, Heidelberg (2009)
Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer (2005)
Emmerich, M., Beume, N., Naujoks, B.: An EMO Algorithm Using the Hypervolume Measure as Selection Criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)
Emmerich, M.T.M., Deutz, A.H.: Test Problems Based on Lamé Superspheres. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 922–936. Springer, Heidelberg (2007)
Emmerich, M.T.M., Fonseca, C.M.: Computing hypervolume contributions in low dimensions: Asymptotically optimal algorithm and complexity results. In: Takahashi, et al. (eds.) [18], pp. 121–135.
Guerreiro, A.P., Fonseca, C.M., Emmerich, M.T.M.: A Fast Dimension-Sweep Algorithm for the Hypervolume Indicator in Four Dimensions. In: CCCG 2012, pp. 77–82 (2012)
Fischer, G.: Lineare Algebra, 11th edn. Vieweg Studium (1997)
Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. Transaction IEEE Evolutionary Computation 13(5), 1075–1082 (2009)
Beume, N.: S-Metric Calculation by Considering Dominated Hypervolume as Klee’s Measure Problem. Evolutionary Computation 17(4), 477–492 (2009)
Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM 22(4), 469–476 (1975)
Noghin, V.D.: Relative importance of criteria: a quantitative approach. Journal of Multi-Criteria Decision Analysis 6(6), 355–363 (1997)
Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of multiobjective optimization. Academic Press Inc. (1985)
Shukla, P.K., Hirsch, C., Schmeck, H.: Towards a Deeper Understanding of Trade-offs Using Multi-objective Evolutionary Algorithms. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 396–405. Springer, Heidelberg (2012)
Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.): EMO 2011. LNCS, vol. 6576. Springer, Heidelberg (2011)
While, R.L., Bradstreet, L., Barone, L.: A Fast Way of Calculating Exact Hypervolumes. IEEE Trans. Evolutionary Computation 16(1), 86–95 (2012)
Yıldız, H., Suri, S.: On Klee’s measure problem on grounded boxes. In: Proceedings of the 28th Annual Symposium on Computational Geometry (SoCG), pp. 111–120 (June 2012)
Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN V. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Emmerich, M., Deutz, A., Kruisselbrink, J., Shukla, P.K. (2013). Cone-Based Hypervolume Indicators: Construction, Properties, and Efficient Computation. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds) Evolutionary Multi-Criterion Optimization. EMO 2013. Lecture Notes in Computer Science, vol 7811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37140-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-37140-0_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37139-4
Online ISBN: 978-3-642-37140-0
eBook Packages: Computer ScienceComputer Science (R0)