Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

International Conference on Discrete Geometry for Computer Imagery

DGCI 2013: Discrete Geometry for Computer Imagery pp 155–168Cite as

  1. Home
  2. Discrete Geometry for Computer Imagery
  3. Conference paper
Sufficient Conditions for Topological Invariance of 2D Images under Rigid Transformations

Sufficient Conditions for Topological Invariance of 2D Images under Rigid Transformations

  • Phuc Ngo18,
  • Yukiko Kenmochi18,
  • Nicolas Passat19 &
  • …
  • Hugues Talbot18 
  • Conference paper
  • 1886 Accesses

  • 4 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 7749)

Abstract

In ℝ2, rigid transformations are topology-preserving operations. However, this property is generally no longer true when considering digital images instead of continuous ones, due to digitization effects. In this article, we investigate this issue by studying discrete rigid transformations (DRTs) on ℤ2. More precisely, we define conditions under which digital images preserve their topological properties under any arbitrary DRTs. Based on the recently introduced notion of DRT graph and the classical notion of simple point, we first identify a family of local patterns that authorize topological invariance under DRTs. These patterns are then involved in a local analysis process that guarantees topological invariance of whole digital images in linear time.

Keywords

  • 2D digital image
  • discrete rigid transformation
  • topology
  • simple point
  • DRT graph
  • Eulerian model

The research leading to these results has received funding from the French Agence Nationale de la Recherche (Grant Agreement ANR-2010-BLAN-0205 03).

Download conference paper PDF

References

  1. Zitová, B., Flusser, J.: Image registration methods: A survey. Image and Vision Computing 21, 977–1000 (2003)

    CrossRef  Google Scholar 

  2. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38, 1–45 (2006)

    CrossRef  Google Scholar 

  3. Jacob, M.A., Andres, E.: On discrete rotations. In: DGCI, Proceedings, pp. 161–174 (1995)

    Google Scholar 

  4. Andres, E.: The Quasi-Shear Rotation. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 307–314. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  5. Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: Periodicity and quasi-periodicity properties. DAM 147, 325–343 (2005)

    MATH  Google Scholar 

  6. Thibault, Y., Kenmochi, Y., Sugimoto, A.: Computing upper and lower bounds of rotation angles from digital images. Pattern Recognition 42, 1708–1717 (2009)

    CrossRef  MATH  Google Scholar 

  7. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. To appear in Computer Vision and Image Understanding

    Google Scholar 

  8. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial Properties of 2D Discrete Rigid Transformations under Pixel-Invariance Constraints. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 234–248. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  9. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision Graphics & Image Processing 48, 357–393 (1989)

    CrossRef  Google Scholar 

  10. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D, and 4D discrete spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 637–648 (2009)

    CrossRef  Google Scholar 

  11. Khalimsky, E.: Topological structures in computer science. Journal of Applied Mathematics and Simulation 1, 25–40 (1987)

    MathSciNet  MATH  Google Scholar 

  12. Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics & Image Processing 46, 141–161 (1989)

    CrossRef  Google Scholar 

  13. Bertrand, G., Couprie, M., Passat, N.: A note on 3-D simple points and simple-equivalence. Information Processing Letters 109, 700–704 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Topology on digital label images. Journal of Mathematical Imaging and Vision 44, 254–281 (2012)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. LIGM, UPEMLV-ESIEE-CNRS, Université Paris-Est, France

    Phuc Ngo, Yukiko Kenmochi & Hugues Talbot

  2. CReSTIC, Université de Reims, EA, 3804, France

    Nicolas Passat

Authors
  1. Phuc Ngo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yukiko Kenmochi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Nicolas Passat
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Hugues Talbot
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Applied Math I, University of Seville, Avd. Reina Mercedes s/n, 41012, Seville, Spain

    Rocio Gonzalez-Diaz & Maria-Jose Jimenez & 

  2. Applied Math I, University of Seville, Avd. Reina Mercedes s/n, 41012, Seville, Spain

    Belen Medrano

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ngo, P., Kenmochi, Y., Passat, N., Talbot, H. (2013). Sufficient Conditions for Topological Invariance of 2D Images under Rigid Transformations. In: Gonzalez-Diaz, R., Jimenez, MJ., Medrano, B. (eds) Discrete Geometry for Computer Imagery. DGCI 2013. Lecture Notes in Computer Science, vol 7749. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37067-0_14

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-37067-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37066-3

  • Online ISBN: 978-3-642-37067-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.212

Not affiliated

Springer Nature

© 2023 Springer Nature