Skip to main content

Cold Tolerance

  • Chapter
  • First Online:

Abstract

Considerations of preparations for a changing climate will generate thoughts of mitigating a rise in temperature and greenhouse gas emission and a change in water availability. Accordingly, reduced prioritization on future research objectives aimed at crop adaptations sufficient to instigate and sustain cold tolerance or winter hardiness expression at any specific location might be deemed by some as the logical outcome. However, such a conclusion would be a grave mistake. With increasing frequency, crops of high agricultural value are being grown at locations beyond their natural ranges of adaptation, a consequence in part of farmers attempting to seize new opportunities to exploit some positive scenarios of climate change that might provide more profitable agricultural output. A second and even greater driver is man’s response to the ever-increasing requirement to feed a growing global population, and with only limited and finite land available that is deemed suitable for agricultural use. For the latter, there is increased use of marginal locations for agricultural production, which will include those locations at high altitude where temperatures are frequently suboptimal for crop production and, in many cases, likely to challenge crop persistency over winter months. In certain temperate locations, where winter temperatures are considered generally moderate, crop growing seasons are becoming extended, encouraged frequently by national policy makers seeing economic advantages in management practices that can achieve an all-year-round cropping potential, but with a great risk. The maintenance of crop growth is the consequence of failure, at least in part, of the initiation and subsequent expression of the appropriate adaptive responses necessary to assure a high probability of winter survival which include growth cessation. Such scenarios place crops at risk of total collapse following any sudden temperature drop and especially onsets of frost conditions. In situations of fluctuating winter temperatures, assured crop survival requires the maintenance of the required adaptive response in place until such time as there is little likelihood of any further incidence of frosts. For optimal crop production, the subsequent appropriate timing of the cessation of the adaptive responses is also essential to enable crop growth to proceed fully as soon as possible, once growth advantageous spring conditions arise.

Cold tolerance and winter survival are complex traits, each having distinct genetic controls and involving responses to the many interacting stresses, their relative importance dependent on crop location. Frost tolerance is considered the trait of main priority with the understanding and manipulation of the factors necessary to optimize initiation of the appropriate cold acclimation responses sufficient to retain cell membrane integrity and prevent desiccation, the most appropriate objectives in crop improvement. Gene expression sufficient to initiate frost tolerance has many equivalent requirements and responses to those required to combat other abiotic stresses that can induce cell desiccation such as prolonged exposures to conditions of drought or salinity. Some of the major aspects and their relative importance are reviewed herein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alm V, Busso CM, Ergon A, Rudi H, Larsen A, Humphreys MW, Rognli OA (2011) QTL analysis and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 123(3):369–382

    Article  PubMed  Google Scholar 

  • Andrews CJ, Gudleifsson BE (1983) A comparison of cold hardiness and ice encasement tolerance of timothy grass and winter wheat. Can J Plant Sci 63:429–435

    Article  Google Scholar 

  • Ariizumi T, Kishitani S, Inatsugi R, Nishida I, Murata N, Toriyama K (2002) An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol 43:751–758

    Article  PubMed  CAS  Google Scholar 

  • Bae HH, Herman E, Bailey B, Bae HJ, Sicher R (2005) Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defence. Physiol Plant 125:114–126

    Article  CAS  Google Scholar 

  • Baek K-H, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci 165:1221–1227

    Article  CAS  Google Scholar 

  • Barker NP, Clark LG, Davis JI, Duvall MR, Guala GF, Hsiao C, Kellogg EA, Linder HP, Mason-Gamer RJ, Mathews SY, Simmons MP, Soreng RJ, Spangler RE (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann MO Bot Gard 88:373–457

    Article  Google Scholar 

  • Barrett J (2001) Thermal hysteresis proteins. Int J Biochem Cell Biol 33:105–117

    Article  PubMed  CAS  Google Scholar 

  • Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1996) Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L) cross. Heredity 77:64–73

    Article  CAS  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC, Boca Raton, FL

    Google Scholar 

  • Bouchabke-Coussa O, Quashie M, Seoane-Redondo J, Fortabat M, Gery C, Yu A, Linderme D, Trouverie J, Granier F, Téoulé E, Durand-Tardif M (2008) ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance. BMC Plant Biol 8:125–151

    Article  PubMed  CAS  Google Scholar 

  • Brändle RA (1991) Flooding resistance of rhizomatous amphibious plants. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. SPB Academic, Hague, pp 35–46

    Google Scholar 

  • Canter PH, Bettany AJE, Donnison I, Timms E, Humphreys MW, Jones RN (2000) Expressed sequence tags (ESTs) during cold-acclimation in Festuca pratensis include a homologue of the chloroplast gene PsbA. J Exp Bot 51:72

    Google Scholar 

  • Caradus JR, Christie BR (1998) Winterhardiness and artificial frost tolerance of white clover ecotypes and selected breeding lines. Can J Plant Sci 78:251–255

    Article  Google Scholar 

  • Catalá R, Santos E, Alonso JM, Ecker JR, Martínez-Zapater JM, Salinas J (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF⁄DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951

    Article  PubMed  CAS  Google Scholar 

  • Chen TH, Murata N (2008) Glycinbetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    Article  PubMed  CAS  Google Scholar 

  • Chen H-H, Li PH, Brenner ML (1983) Involvement of abscisic acid in potato cold acclimation. Plant Physiol 71:362–365

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee B, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and cold tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–61

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    Article  PubMed  CAS  Google Scholar 

  • Cutler AJ, Saleem M, Kendall E, Gusta LV, Georges F, Fletcher GL (1989) Winter under antifreeze proteins improve the cold hardiness of plant tissues. J Plant Physiol 135:351–354

    Article  CAS  Google Scholar 

  • Davies DD (1980) Anaerobic metabolism and the production of organic acids. In: Davies DD (ed) The biochemistry of plants, vol 2. Academic, London, pp 581–611

    Google Scholar 

  • Dubcovsky J (2004) Marker assisted selection in public breeding programs: the wheat experience. Crop Sci 44:1895–1898

    Article  Google Scholar 

  • Duman JG (1994) Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. Biochim Biophys Acta 1206:129–135

    Article  PubMed  CAS  Google Scholar 

  • Duman JG, Wu DW, Olsen TM, Urrutia M, Tursman D (1993) Thermal-hysteresis proteins. In: Steponkus PL (ed) Advances in low temperature biology, vol 2. JAI, London, pp 131–182

    Google Scholar 

  • Eagles HA (1982) Inheritance of emergence time and seedling growth at low temperatures in four lines of maize. Theor Appl Genet 62:81–87

    Google Scholar 

  • Eagles CF (1989) Temperature-induced changes in cold tolerance of Lolium Perenne. J Agric Sci Camb 113:339–347

    Article  Google Scholar 

  • Eagles CF (1994) Temperature, photoperiod and dehardening of forage grasses and legumes. In: Crop adaptation to cool climates. Proceedings of the COST 814 workshop, Hamburg, Germany, pp 75–82

    Google Scholar 

  • Eagles CF, Williams J, Louis DV (1993) Recovery after freezing in Avena sativa L., Lolium perenne L. & L. multiflorum Lam. New Phytol 123:477–483

    Article  Google Scholar 

  • Ellis RH, Summerfield RJ, Edmeades GO, Roberts EH (1992) Photoperiod, temperature and the interval from sowing to tassle initiation in diverse cultivars of maize. Crop Sci 32:125–132

    Google Scholar 

  • Else MA, Davies WJ, Malone M, Jackson MB (1995) A negative hydraulic message from oxygen-deficient roots of tomato plants? Influence of soil flooding on leaf water potential, leaf expansion and the synchrony of stomatal conductance and root hydraulic conductivity. Plant Physiol 109:1017–1024

    PubMed  CAS  Google Scholar 

  • Flower S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  Google Scholar 

  • Fox GG, McCallan GG, Ratcliffe RG (1995) Manipulating cytoplasmic pH under anoxia: a critical test of the role of pH in the switch from aerobic to anaerobic metabolism. Planta 195:324–330

    Article  CAS  Google Scholar 

  • Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Tóth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a “Nure” (winter) “Tremois” (spring) barley map. Theor Appl Genet 108:670–680

    Article  PubMed  CAS  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115(8):1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Frankow-Lindberg BE (2001) Adaptation to winter stress in nine white clover populations: changes in non-structural carbohydrates during exposure to simulated winter conditions and ‘spring’ regrowth potential. Ann Bot 88:745–751

    Article  CAS  Google Scholar 

  • Galiba G, Simonsarkadi L, Kocsy G, Salgo A, Sutka J (1992) Possible chromosomal location of genes determining the osmoregulation of wheat. Theor Appl Genet 85(4):415–418

    Article  Google Scholar 

  • Galiba G, Tuberosa R, Kocsy G, Sutka J (1993) Involvement of chromosome 5A and 5D in cold-induced abscisic acid accumulation in and frost tolerance of wheat calli. Plant Breed 110:237–242

    Article  CAS  Google Scholar 

  • Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of the vernalization (Vrn1) and frost-resistance (Fr1) genes on chromosome 5a of wheat. Theor Appl Genet 90(7–8):1174–1179

    CAS  Google Scholar 

  • Galiba G, Vagujfalvi A, Li CX, Soltesz A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19

    Article  CAS  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    Article  CAS  Google Scholar 

  • Gay AP, Eagles CF (1991) Quantitative analysis of cold hardening and dehardening in Lolium. Ann Bot 67:339–346

    Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci USA 99:11507–11512

    Article  PubMed  CAS  Google Scholar 

  • Greaves A (1996) Improving suboptimal temperature tolerance in maize-the search for variation. J Exp Bot 47:307–323

    Article  CAS  Google Scholar 

  • Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9(8):399–405

    Article  PubMed  CAS  Google Scholar 

  • Gudleifsson BE (1971) Um kal og kalskemmdir. I. Raektun og nytiar t6na og hrif pessara ptta kal [Winter damages I. The influence of cultivation and grassland management on winter damage]. Arsrit Raktunarfelags Norburlands 68:73–93

    Google Scholar 

  • Gudleifsson BE, Andrews CJ, Bjornsson H (1986) Cold hardiness and ice tolerance of pasture grasses grown and tested in controlled environments. Can J Plant Sci 66:601–608

    Article  Google Scholar 

  • Gusta LV, Wisniewski M, Nesbitt NT, Gusta ML (2004) The effect of water, sugars, and proteins on the pattern of ice nucleation and propagation in acclimated and nonacclimated canola leaves. Plant Physiol 135:1642–1653

    Article  PubMed  CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Guy CL, Niemi KJ, Brambl R (1985) Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci USA 82:3673–3677

    Article  PubMed  CAS  Google Scholar 

  • Hahn M, Walbot V (1989) Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves. Plant Physiol 91:930–938

    Article  PubMed  CAS  Google Scholar 

  • Hansen J, Beck E (1994) Seasonal changes in the utilization and turnover of assimilation products in a 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees 8:172–182

    Article  Google Scholar 

  • Hansen J, Türk R, Vogg G, Heim R, Beck E (1997) Conifer carbohydrate physiology: updating classical views. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees – contributions to modern tree physiology. Backhuys, Leiden, pp 97–108

    Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hartley H (1973) Studies on the origin, evolution, and distribution of the gramineae. V. The subfamily Festucoideae. Aust J Bot 21:201–234

    Article  Google Scholar 

  • Hayes PM, Blake T, Chen THH, Tragoonrung S, Chen F, Pan A, Liu B (1993) Quantitative trait loci on barley (Hordeum vulgare L) chromosome-7 associated with components of winterhardiness. Genome 36(1):66–71

    Article  PubMed  CAS  Google Scholar 

  • Herczegh M (1970) Some problems of cold tolerance. In: Kovacs I (ed) Some methodological achievements of the hungarian hybrid maize breeding. Akademiai Kiado, Budapest, pp 271–281

    Google Scholar 

  • Hernández-Nistal J, Dopico B, Labrador E (2002) Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Sci 163:507–514

    Article  Google Scholar 

  • Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11:2113–2122

    PubMed  CAS  Google Scholar 

  • Hon WC, Griffith M, Mlynarz A, Kwok YA, Yang DCS (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol 109:879–889

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Dallaire S, N’dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol 2:381–387

    Article  CAS  Google Scholar 

  • Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47:291–305

    Article  CAS  Google Scholar 

  • Humphreys MO, Humphreys MW (2005) Breeding for stress resistance: general principles. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches, C hap 2. Pub Haworth, New York, pp 19–46

    Google Scholar 

  • Humphreys MW, Pasakinskiene I, James AR, Thomas H (1998) Physical mapping quantitative traits for stress resistance in the forage grasses. J Exp Bot 49:1611–1618

    CAS  Google Scholar 

  • Humphreys J, Harper JA, Armstead IP, Humphreys MW (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor Appl Genet 11(3):579–587

    Article  CAS  Google Scholar 

  • Humphreys MW, Yadav RS, Cairns AJ, Turner LB, Humphreys J, Skot L (2006) A changing climate for grassland research. New Phytol 169(1):9–26

    Article  PubMed  CAS  Google Scholar 

  • Humphreys MW, Gasior D, Lesniewska-Bocianowska A, Zwierzykowski Z, Rapacz M (2007) Androgenesis as a means of dissecting complex genetic and physiological controls: selecting useful gene combinations for breeding freezing-tolerant grasses. Euphytica 158(3):337–345

    Article  Google Scholar 

  • Huner NPA, Maxwell DP, Gray GR, Savitch LV, Krol M, Ivanov AG (1996) Sensing environmental change: PSII excitation pressure and redox signalling. Physiol Plant 8:358–364

    Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  PubMed  CAS  Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Int Plant Biol 50(10):1223–1229

    Article  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB (1990) Hormones and developmental change in plants subjected to submergence or soil waterlogging. Aquat Bot 38:49–72

    Article  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Detis T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  Google Scholar 

  • Jensen LB, Andersen JR, Frei U, Xing YZ, Taylor C, Holm PB, Lubberstedt TL (2005) QTL mapping of vernalization response in perennialryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536

    Article  PubMed  CAS  Google Scholar 

  • John UP, Polotnianka RM, Sivakumaran KA, Chew O, MacKin L, Kuiper MJ, Talbot JP, Nugent GD, Mautord J, Schrauf GE (2009) Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv. Plant Cell Environ 32(4):336–348

    Article  PubMed  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun J, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247–259

    Article  PubMed  CAS  Google Scholar 

  • King J, Armstead IP, Donnison IS, Thomas HT, Jones RJ, Kearsey MJ, Roberts LA, Thomas A, Morgan WG, King IP (2002a) Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis. Genetics 161:307–314

    PubMed  CAS  Google Scholar 

  • King J, Roberts LA, Kearsey MJ, Thomas HM, Jones RN, Huang L, Armstead IP, Morgan WG, King IP (2002b) A demonstration of a 1:1 correspondence between chiasma frequency and recombination using a Lolium perenne/Festuca pratensis substitution line. Genetics 161:315–324

    PubMed  CAS  Google Scholar 

  • Knox AK, Dhillon T, Cheng HM, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121(1):21–35

    Article  PubMed  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  PubMed  CAS  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter x spring barley (Hordeum vulgare L.) cross. Genome 38(3):575–585

    Article  PubMed  CAS  Google Scholar 

  • Law CN, Sutka J, Worland AJ (1978) Genetic study of day-length response in wheat. Heredity 41:185–191

    Article  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stress, vol I, 2nd edn, Chilling, freezing, and high temperature stresses. Academic, New York

    Google Scholar 

  • Liu Q, Ksauga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed  CAS  Google Scholar 

  • Livingston DP, Premakumar R, Tallury SP (2006) Carbohydrate partitioning between upper and lower regions of the crown in oat and rye during cold acclimation and freezing. Cryobiology 52:200–208

    Article  PubMed  CAS  Google Scholar 

  • Lynch DV (1990) Chilling injury in plants: the relevance of membrane lipids. In: Katterman F (ed) Environmental injury to plants. Academic, New York, pp 17–34

    Google Scholar 

  • Mattoo AK, Marder J, Edelman M (1989) Dynamics of the photosystem II reaction center. Cell 56:241–246

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Bowley SR (1997) Active oxygen and freezing tolerance in transgenic plants. In: Li PH, Chen THH (eds) Plant cold hardiness: molecular biology, biochemistry, and physiology. Plenum, New York, pp 203–214

    Chapter  Google Scholar 

  • Meza-Basso L, Alberdi M, Raynal M, Ferrero-Cadinanos ML, Delseny M (1986) Changes in protein synthesis in Rapeseed (Brassica napus) seedlings during a low temperature treatment. Plant Physiol 82:733–738

    Article  PubMed  CAS  Google Scholar 

  • Middleton AJ, Brown AM, Davies PL, Walker VK (2009) Identification of the ice-binding face of a plant antifreeze protein. FEBS Lett 583:815–819

    Article  PubMed  CAS  Google Scholar 

  • Miedema P (1982) The effects of low temperatures on Zea mays. Adv Agron 35:93–128

    Article  Google Scholar 

  • Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A(m)2 in Triticum monococcum. Mol Genet Genomics 275(2):193–203

    Article  PubMed  CAS  Google Scholar 

  • Monroy AF, Dryanova A, Malette B, Oren DH, Farajalla MR, Liu W, Danyluk J, Ubayasena LWC, Kane K, Scoles GJ, Sarhan F, Gulick PJ (2007) Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol 64:409–423

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Moore BJ, Donnison IS, Harper JA, Armstead IP, King J, Thomas H, Jones RN, Jones TH, Thomas HM, Morgan WG, Thomas A, Ougham HJ, Huang L, Fentem T, Roberts LA, King IP (2005) Molecular tagging of asenescence gene by introgression mapping of a mutant stay-green locus from Festuca pratensis. New Phytol 165:801–806

    Article  PubMed  CAS  Google Scholar 

  • Műller J, Boller T, Wiemken A (1995) Trehalose and trehalase inplants: recent developments. Plant Sci 112:1–9

    Article  Google Scholar 

  • Műller J, Aeschbacher RA, Sprenger N, Boller T, Wiemken A (2000) Disaccharide-mediated regulation of sucrose: fructan-6-fructosyltransferase, a key enzyme of fructan synthesis in barley leaves. Plant Physiol 123:265–274

    Article  PubMed  Google Scholar 

  • Nie G-Y, Long SP, Baker NR (1992) The effects of development at sub-optimal growth temperatures on photosynthetic capacity and susceptibility to chilling-dependent photoinhibition in Zea mays. Physiol Plant 85:554–560

    Article  CAS  Google Scholar 

  • Nieuwhof M, Keizer LCP, Oeveren JC (1997) Effects of temperature on growth and development of adult plants of genotypes of tomato (Lycopersicon esculentum Mill.). J Genet Breed 51(3):185–193

    Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  PubMed  CAS  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2⁄DREB1C is a negative regulator of CBF1⁄DREB1B and CBF3⁄DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990

    Article  PubMed  CAS  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104:21002–21007

    Article  PubMed  CAS  Google Scholar 

  • Olien CR, Smith MN (1997) Ice adhesions in relation to freeze stress. Plant Physiol 60:499–503

    Article  Google Scholar 

  • Oono Y, Seki M, Najo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Kakiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using a ca. 7000 full length cDNA microarray. Plant J 34:868–887

    Article  PubMed  CAS  Google Scholar 

  • Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Bedo Z (1994) Genetic analysis of the components of winter hardiness in barley (Hordeum vulgare L). Theor Appl Genet 89(7–8):900–910

    CAS  Google Scholar 

  • Pramanik MHR, Imai R (2005) Functional identification of a trehalose-6-phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    Article  PubMed  CAS  Google Scholar 

  • Pulli S (1989) Metabolic effects of flooding in red clover and bromegrass during growth and hardening. Iceland Agric Sci 2:75–85

    Google Scholar 

  • Pulli S, Hjortsholm K, Larsen A, Gudleifsson B, Larsson S, Kristiansson B, Hommo L, Tronsmo AM, Ruuth P, Kristensson C (1996) Development and evaluation of laboratory testing methods for winterhardiness breeding. Sweden, Nordic Gene Bank, pp 1–68

    Google Scholar 

  • Quarrie SA, Laurie DA, Zhu JH, Lebreton C, Semikhodskii A, Steed A, Witsenboer H, Calestani C (1997) QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Mol Biol 35(1–2):155–165

    Article  PubMed  CAS  Google Scholar 

  • Quinn PJ (1985) A lipid phase separation model of low temperature damage to biological membranes. Cryobiology 22:28–46

    Article  Google Scholar 

  • Rapacz M (2002) Regulation of frost resistance during cold deacclimation and reacclimation in oilseed rape. A possible role of PSII redox state. Physiol Plant 115:236–243

    Article  PubMed  CAS  Google Scholar 

  • Rapacz M, Gasior D, Zwierzykowski Z, Lesnieweska-Bocianowska A, Humphreys MW, Gay AP (2004) Changes in cold tolerance and the mechanisms of acclimation of photosystem II to cold hardening generated by another culture of Festuca pratensis and Lolium multiflorum cultivars. New Phytol 162:105–114

    Article  CAS  Google Scholar 

  • Rapacz M, Gasior D, Humphreys MW, Zwierzykowski Z, Plazek A, Lesniewska-Bocianowska A (2005) Variation for winter hardiness generated by androgenesis from Festuca pratensis × Lolium multiflorum amphidiploid cultivars with different winter susceptibility. Euphytica 142(1–2):65–73

    Article  Google Scholar 

  • Roberts JKM, Wemmer D, Ray PM, Jardetzky O (1982) Regulation of cytoplasmic and vacuolar pH in maize root tips under different experimental conditions. Plant Physiol 69:1344–1347

    Article  PubMed  CAS  Google Scholar 

  • Robson P, Mos M, Clifton-Brown J, Donnison I (2012) Phenotypic variation in senescence in Miscanthus: towards optimising biomass quality and quantity. Bioenergy Res 5:95–105

    Article  Google Scholar 

  • Roderick HW, Morgan WG, Harper JA, Thomas HM (2003) Introgression of crown rust (Puccinia graminis) from meadow fescue (Festuca pratensis) into Italian ryegrass (Lolium multiflorum) and physical mapping of the locus. Heredity 91:396–400

    Article  PubMed  CAS  Google Scholar 

  • Sandve SR, Fjellheim S (2010) Did gene family expansions during the Eocene–Oligocene boundary climate cooling play a role in Pooideae adaptation to cool climates? Mol Ecol 19(10):2075–2088

    Article  PubMed  CAS  Google Scholar 

  • Sandve SR, Rudi H, Asp T, Rognli OA (2008) Tracking the evolution of a cold stress associated gene family in cold tolerant grasses. BMC Evol Biol 8:245

    Article  PubMed  CAS  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43

    Article  PubMed  CAS  Google Scholar 

  • Satoh R, Nakashima K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2002) ACTCAT, a novel cis-acting element for praline and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiol 130:709–719

    Article  PubMed  CAS  Google Scholar 

  • Scarth R, Law CN (1984) The control of the daylength response in wheat by the group 2 chromosomes. Plant Breed 92:140–150

    Google Scholar 

  • Senser M, Beck E (1982) Frost resistance in Spruce (Picea abies (L.) Karst): V. Influence of photoperiod and temperature on the membrane lipids of the needles. Z Pflanzenphysiol 108:71–85

    CAS  Google Scholar 

  • Shima S, Matsui H, Tahara S, Imai R (2007) Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J 274:1192–1201

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Plant Biol 3:217–223

    CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Plant Biol 6:410–417

    CAS  Google Scholar 

  • Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250:161–170

    Article  PubMed  CAS  Google Scholar 

  • Skinner J, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112(5):832–842

    Article  PubMed  CAS  Google Scholar 

  • Smallwood M, Bowles JD (2002) Plants in a cold climate. Philos Trans R Soc B Biol Sci 357(1423):831–847

    Article  CAS  Google Scholar 

  • Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43(3):487–494

    Article  PubMed  CAS  Google Scholar 

  • Stamp P (1984) Chilling tolerance of young plants demonstrated on the example of maize (Zea mays L.). J Agron Crop Sci 7(suppl):1–83

    Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat – two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Advance in low-temperature biology, vol 2. JAI, London, pp 211–312

    Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94(3):1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Storlie EW, Allan RE, Walker-Simmons MK (1998) Effect of the Vrn1-Fr1 interval on cold hardiness levels in near-isogenic wheat lines. Crop Sci 38:483–488

    Article  Google Scholar 

  • Sui N, Li M, Zhao SJ, Li F, Liang H, Meng QW (2007) Overexpression of glycerol-3-phosphate acyl transferase gene improves chilling tolerance in tomato. Planta 226:1097–1108

    Article  PubMed  CAS  Google Scholar 

  • Sutka J, Snape JW (1989) Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42:41–44

    Article  Google Scholar 

  • Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Yamada T (2007) A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between Poaceae species. Theor Appl Genet 114(2):273–283

    Article  PubMed  CAS  Google Scholar 

  • Tao DL, Oquist G, Wingsle G (1998) Active oxygen scavengers during cold acclimation of Scots pine seedlings in relation to freezing tolerance. Cryobiology 37:38–45

    Article  PubMed  CAS  Google Scholar 

  • Thomas H, James AR (1993) Freezing tolerance and solute changes in contrasting genotypes of Lolium perenne L. acclimated to cold and drought. Ann Bot 72:249–254

    Article  CAS  Google Scholar 

  • Thomashow MF (1990) Molecular genetics of cold acclimation in higher plants. In: Scandalios JG (ed) Advances in genetics, genomic responses to environmental stress, vol 28. Academic, New York, pp 99–131

    Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–8

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Tremblay K, Ouellet F, Fournier J, Danyluk J, Sarhan F (2005) Molecular characterization and origin of novel bipartite cold-regulated ice recrystallization inhibition proteins from cereals. Plant Cell Physiol 46(6):884–891

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Steponkus PL (1994) A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 104:479–496

    PubMed  CAS  Google Scholar 

  • Uemura M, Steponkus PL (1997) Artificial manipulation of the intracellular sucrose content alters the incidence of freeze-induced membrane lesions of isolated protoplasts of Arabidopsis thaliana. Cryobiology 35:336

    Google Scholar 

  • Vagujfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol Genet Genomics 269(1):60–67

    PubMed  CAS  Google Scholar 

  • Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916

    Article  PubMed  CAS  Google Scholar 

  • Valluru R, Lammens W, Claupein W, Van den Ende W (2008) Freezing tolerance by vesicle-mediated fructan transport. Trends Plant Sci 13:409–414

    Article  PubMed  CAS  Google Scholar 

  • Vartapetian BB, Jackson B (1997) Plant adaptations to anaerobic stress. Ann Bot 79(Suppl A):3–20

    Article  CAS  Google Scholar 

  • Vogel JT, Zarka DG, van Anbuskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  PubMed  CAS  Google Scholar 

  • Wagner W, Wiemken A, Matile P (1986) Regulation of fructan metabolism in leaves of barley (Hordeum vulgare L. cv. Gerbel). Plant Physiol 81:444–447

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wani SH, Sandhu JS, Gosal SS (2008) Genetic engineering of crop plants for abiotic stress tolerance. In: Malik CP, Kaur B, Wadhwani C (eds) Advanced topics in plant biotechnology and plant biology. MD Publications, New Delhi, pp 149–183

    Google Scholar 

  • Watts WR (1972) Role of temperature in regulation of leaf extension in Zea mays. Nature 229:46–47

    Article  Google Scholar 

  • Welsh JR, Keim DL, Pirasteh B, Ricarhds RD (1973) Genetic control of photoperiod response in wheat. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium. University of Missouri, Columbia, MO, pp 879–884

    Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou H-E, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase in freezing induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  PubMed  CAS  Google Scholar 

  • Williams WP (1990) Cold-induced lipid phase transitions. Philos Trans R Soc Lond 326:555–570

    Article  CAS  Google Scholar 

  • Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C, Bowles D (1998) A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science 282(5386):115–117

    Article  PubMed  CAS  Google Scholar 

  • Xin Z, Browse J (1998) Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci USA 95:7799–7804

    Article  PubMed  CAS  Google Scholar 

  • Xin Z, Li PH (1993) Relationship between proline and abscisic acid in the induction of chilling tolerance in maize suspension-cultured cells. Plant Physiol 103(2):607–613

    PubMed  CAS  Google Scholar 

  • Xin Z, Mandaokar A, Chen J, Last RL, Browse J (2007) Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J 49:786–799

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Zachariassen KE, Kristiansen E (2000) Ice nucleation and antinucleation in nature. Cryobiology 41(4):257–279

    Article  PubMed  CAS  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate. Ma to present. Science 65:686–693

    Article  Google Scholar 

  • Zhang YJ, Yang JS, Guo SJ, Meng JJ, Zhang YL, Wan SB, He QW, Li XG (2011) Over-expression of the Arabidopsis CBF1 gene improves resistance of tomato leaves to low temperature under low irradiance. Plant Biol 13(2):362–367

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Shi H, Lee BH, Damsz B, Cheng S, Strim V, Zhu JK, Hasegawa PM, Bressan RA (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA 101:9873–9878

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Verslues PE, Zheng X, Lee BH, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong CH, Zhu JK, Hasegawa PH, Bressan RA (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA 102:9966–9971

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Humphreys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Humphreys, M., Gasior, D. (2013). Cold Tolerance. In: Kole, C. (eds) Genomics and Breeding for Climate-Resilient Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37048-9_3

Download citation

Publish with us

Policies and ethics