Skip to main content

Abstract

Adaptation genes have a major role to play in the response of plants to environmental changes. Flowering time is a key adaptive trait, responding to environmental and endogenous signals that ensure reproductive growth and development occurs under favorable environmental conditions. Under a climate change scenario, temperature and water conditions are forecast to change and/or fluctuate, while photoperiods will remain constant at any given latitude. By assessing the current knowledge of the flowering-time pathways in both model (Arabidopsis thaliana) and key cereal (rice, barley, wheat, maize), temperate forage and biofuel grasses (perennial ryegrass, Miscanthus, sugarcane), root (sugar beet), and tree (poplar) crop species, it is possible to define key breeding targets for promoting adaptation and yield stability under future climatic conditions. In Arabidopsis, there are four pathways controlling flowering time, and the genetic and/or epigenetic control of many of the steps in these pathways has been well characterized. Despite this, even in this model species, there is little published information on the molecular basis of adaptation to the environment. In contrast, in crop and tree species, flowering time has been continually selected, either directly or indirectly as breeders and growers have selected the material that best suits a particular location. Understanding the genetic basis of this adaptive selection is now being facilitated via cloning of major genes, the mapping of QTL, and the use of marker-assisted breeding for specific flowering targets. In crop species where the genetic basis of flowering is not well understood (i.e., in the emerging biofuel grass, Miscanthus), such work is in its infancy. In cases where the genetic basis is well established, however, there are still grounds for important discovery, via new and emerging methods for mapping and selecting for flowering-time traits (i.e., QTL mapping in MAGIC populations, RABID selection), as well as methods for creating new genetic combinations with potentially novel flowering-time phenotypes (i.e., via targeted mutagenesis). In the future it is likely that computational modeling approaches which incorporate gene networks and the range of phenological response to measurable environmental conditions will play a central role in predicting the resilience of crop and tree species under climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaquchi A, Ikeda Y, Ichinoki H, Notaquchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator. J Exp Bot 61:2247–2254

    Google Scholar 

  • Abou-Elwafa SF, Büttner B, Chia T, Schulze-Buxloh G, Hohmann U, Mutasa-Göttgens E, Jung C, Müller AE (2010) Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris. J Exp Bot 62:3359–3374

    PubMed  Google Scholar 

  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530

    PubMed  CAS  Google Scholar 

  • Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883

    PubMed  CAS  Google Scholar 

  • Alon U (2007) An introduction to systems biology: design principles of biological circuits, vol 10. Chapman & Hall/CRC, London

    Google Scholar 

  • Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013

    PubMed  CAS  Google Scholar 

  • An H, Roussot C, Suárez-López P, Corbesier L, Vincent C, Piñeiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615–3626

    PubMed  CAS  Google Scholar 

  • Angel A, Song J, Dean C, Howard M (2011) A polycomb-based switch underlying quantitative epigenetic memory. Nature 476:105–109

    PubMed  CAS  Google Scholar 

  • Anslow RC, Green JO (1967) The seasonal growth of pasture grasses. J Agric Sci Camb 68:109–122

    Google Scholar 

  • Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J et al (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60

    PubMed  Google Scholar 

  • Armstead IP, Turner LB, Farrell M, Skot L, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO (2004) Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 108:822–828

    PubMed  CAS  Google Scholar 

  • Armstead IP, Skot L, Turner LB, Skot K, Donnison IS, Humphreys MO, King IP (2005) Identification of perennial ryegrass (Lolium perenne (L.)) and meadow fescue (Festuca pratensis (Huds.)) candidate orthologous sequences to the rice Hd1 (Se1) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny. New Phytol 167:239–247

    PubMed  CAS  Google Scholar 

  • Armstead IP, Turner LB, Marshall AH, Humphreys MO, King IP, Thorogood D (2008) Identifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass (Lolium perenne) by quantitative trait loci analysis and comparative genetics. New Phytol 178:559–571

    PubMed  CAS  Google Scholar 

  • Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyat NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Ausín I, Nordborg M (2011) Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines. Nature, 465:627–631

    Google Scholar 

  • Augspurger CK (2009) Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Funct Ecol 23:1031–1039

    Google Scholar 

  • Ausín I, Alonso-Blanco C, Jarillo JA, Ruiz-García L, Martinez-Zapater JM (2004) Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet 36:162–166

    PubMed  Google Scholar 

  • Azpiroz R, Wu Y, Locascio JC, Feldmann KS (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10:219–230

    Google Scholar 

  • Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006a) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2:e106

    PubMed  Google Scholar 

  • Balasubramanian S, Sureshkumar S, Agrawal M, Michael TP, Wessinger C, Maloof JN, Clark R, Warthmann N, Chory J, Weigel D (2006b) The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nat Genet 38:711–715

    PubMed  CAS  Google Scholar 

  • Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167

    PubMed  CAS  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    PubMed  CAS  Google Scholar 

  • Beaubien EG, Freeland HJ (2000) Spring phenology trends in Alberta, Canada: links to ocean temperature. Int J Biometeorol 44:53–59

    PubMed  CAS  Google Scholar 

  • Beaubien EG, Hamann A (2011) Plant phenology networks of citizen scientists: recommendations from two decades of experience in Canada. Int J Biometeorol 55:833–841

    PubMed  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Google Scholar 

  • Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P (2012) Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theor Appl Genet 124:697–711

    PubMed  Google Scholar 

  • Bentley AR, Turner AS, Gosman N, Leigh FJ, Maccaferri M, Dreisigacker S, Greenland A, Laurie DA (2011) Frequency of the photoperiod-insensitive Ppd-A1a alleles in tetraploid, hexaploid and synthetic hexaploid wheat germplasm. Plant Breed 130:10–15

    CAS  Google Scholar 

  • Bentley AR, Horsnell R, Werner CP, Turner AS, Rose GA, Bedard C, Howell P, Wilhelm EP, Mackay IJ, Howells RM, Greenland A, Laurie DA, Gosman N (2013) Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different Photoperiod-1 (Ppd-1) alleles. J Exp Bot. doi:10.1093/jxb/ert038

    PubMed  Google Scholar 

  • Biancardi E, Lewellen RT (2010) Foreword. Sugar Technol 12:179–180

    Google Scholar 

  • Bielenberg DG (2011) Knowing when not to grow. New Phytol 189:3–5

    PubMed  Google Scholar 

  • Blázquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791–800

    PubMed  Google Scholar 

  • Blázquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33:168–171

    PubMed  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    PubMed  Google Scholar 

  • Boote K, Jones J, Hoogenboom G, Pickering N (1998) The CROPGRO model for grain legumes. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production. Kluwer Academic, Dordrecht, pp 99–128

    Google Scholar 

  • Borras-Gelonch G, Rebetzke GJ, Richards RA, Romagosa I (2012) Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering, and dry matter accumulation. J Exp Bot 63:69–89

    PubMed  CAS  Google Scholar 

  • Bosemark NO (2006) Genetics and breeding. In: Draycott AP (ed) Sugar beet. Wiley-Blackwell, Chicester, pp 50–88

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (2001) Genetic shift in photoperiodic response correlated with global warming. Proc Natl Acad Sci USA 98:14509–14511

    PubMed  CAS  Google Scholar 

  • Brunner A, Nilsson O (2004) Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytol 164:43–51

    CAS  Google Scholar 

  • Brunner AM, Rottmann WH, Sheppard LA, Krutovskii K, DiFazio SP, Leonardi S, Strauss SH (2000) Structure and expression of duplicate AGAMOUS orthologues in poplar. Plant Mol Biol 44:619–634

    PubMed  CAS  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718

    PubMed  CAS  Google Scholar 

  • Burn JE, Bangall DJ, Metzeger JD, Dennis ES, Peacock WJ (1993) DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci USA 90:287–291

    PubMed  CAS  Google Scholar 

  • Buttner B, Abou-Elwafa SF, Zhang W, Jung C, Müller AE (2010) A survey of EMS-induced biennial Beta vulgaris mutants reveals a novel bolting locus which is unlinked to the bolting gene B. Theor Appl Genet 121:1117–1131

    PubMed  Google Scholar 

  • Campoli C, Drosse B, Searle I, Coupland G, von Korff M (2012) Functional characterization of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS. Plant J 69:868–880

    PubMed  CAS  Google Scholar 

  • Causier B, Schwarz-Sommer Z, Davies B (2010) Floral organ identity: 20 years of ABCs. Semin Cell Dev Biol 21:73–79

    PubMed  CAS  Google Scholar 

  • Chandler J, Dean C (1994) Factors affecting the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana L. Heynh. J Exp Bot 278:1279–1288

    Google Scholar 

  • Chandler J, Wilson A, Dean C (1996) Arabidopsis mutants showing altered response to vernalization. Plant J 10:637–644

    PubMed  CAS  Google Scholar 

  • Charles-Edwards DA, Cockshull KE, Horridge JS, Thornley JHM (1979) A model of flowering in chrysanthemum. Ann Bot 44:557–566

    Google Scholar 

  • Chen SL, Renvoize SA (2006) Miscanthus. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 22. Science/Missouri Botanical Garden Press, Beijing/St Louis, pp 581–583

    Google Scholar 

  • Chen TH, Howe GT, Bradshaw HD (2002) Molecular genetic analysis of dormancy–related traits in poplars. Weed Sci 50:232–240

    CAS  Google Scholar 

  • Chia TYP, Müller AE, Jung C, Mutasa-Göttgens ES (2008) Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early bolting (B) gene locus. J Exp Bot 59:2735–2748

    PubMed  CAS  Google Scholar 

  • Chiang GCK, Barua D, Kramer EM, Amasino RM, Donohue K (2009) Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA 106:11661–11666

    PubMed  CAS  Google Scholar 

  • Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol 113:611–619

    PubMed  CAS  Google Scholar 

  • Chiurugwi T, Holmes HF, Qi A, Chia TYP, Hedden P, Mutasa-Göttgens ES (2012) Development of new quantitative physiological and molecular breeding parameters based on the sugar-beet vernalization intensity model. J Agric Sci. doi:10.1017/S0021859612000573

  • Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3:445–459

    PubMed  CAS  Google Scholar 

  • Chouard P (1960) Vernalization and its relationship to dormancy. Annu Rev Plant Physiol 11:191–238

    CAS  Google Scholar 

  • Clark JH, Dean C (1994) Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol Gen Genet 242:81–89

    Google Scholar 

  • Clarke JM, DePauw RM, Thiessen LL (1998) Registration of wheat genetic stocks near-isogenic for photoperiod sensitivity. Crop Sci 38:882

    Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    PubMed  Google Scholar 

  • Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsene JB, Jørgensene U, Mortensene JV, Riched AB, Schwarze K-U, Tayebic K, Teixeirac F (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019

    Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007a) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    PubMed  CAS  Google Scholar 

  • Cockram J, Mackay IJ, O’Sullivan DM (2007b) The role of double-stranded break repair in the creation of phenotypic diversity at cereal VRN1 loci. Genetics 177:1–5

    Google Scholar 

  • Cockram J, Howells R, O’Sullivan DM (2010a) Segmental duplication harbouring group IV CONSTANS-like genes in cereals. Genome 53:231–240

    PubMed  CAS  Google Scholar 

  • Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey MJ, Werner P, Harrap D, Tapsell C, Liu H, Hedley PE, Steine N, Schulte D, Steuernagel B, Marshall DF, Thomas WTB, Ramsay L, Mackay I, Balding DJ, The AGOUEB Consortium, Waugh R, O’Sullivan DM (2010b) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci USA 107:21611–21616

    PubMed  CAS  Google Scholar 

  • Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Bailey P, O’Sullivan P (2012) Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae. PLoS One 7:e45307

    PubMed  CAS  Google Scholar 

  • Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603

    PubMed  CAS  Google Scholar 

  • Collaborative Cross Consortium (2012) The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics 190:389–401

    Google Scholar 

  • Cooper M, van Eeuwijk FA, Hammer G, Podlich DW, Messina C (2009) Modelling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol 12:231–240

    PubMed  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang SH, Fornara F, Fan QZ, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    PubMed  CAS  Google Scholar 

  • Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60:2529–2539

    PubMed  CAS  Google Scholar 

  • Craufurd PQ, Mahalakshmi V, Bidinger FR, Mukuru SZ, Chantereau J, Omanga PA, Qi A, Roberts EH, Ellis RH, Summerfield RJ, Hammer GL (1999) Adaptation of sorghum: characterisation of genotypic flowering responses to temperature and photoperiod. Theor Appl Genet 99:900–911

    Google Scholar 

  • Crossa J, de los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger M, Braun J-J (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    PubMed  CAS  Google Scholar 

  • Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132:1849–1860

    PubMed  CAS  Google Scholar 

  • Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141:1199–1207

    PubMed  CAS  Google Scholar 

  • Davis SJ (2009) Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant Cell Environ 32:1201–1210

    PubMed  CAS  Google Scholar 

  • De Lucia F, Crevillen P, Jones AME, Greb T, Dean C (2008) A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA 105:16831–16836

    PubMed  Google Scholar 

  • Debenham GB (1999) Bolting and flowering mechanisms in sugar beet, Beta vulgaris, spp vulgaris (L). PhD Thesis, University of Nottingham, Nottingham

    Google Scholar 

  • Diaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number variation affecting the Photoperiod-B1 and Vernalisation-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One 7:e33234

    PubMed  CAS  Google Scholar 

  • Distelfeld A, Tranquilli G, Li C, Yan L, Dubcovsky J (2009a) Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol 149:245–257

    PubMed  CAS  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009b) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184

    PubMed  CAS  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM (2005) Plant circadian clocks increase photosynthesis, growth and survival, and competitive advantage. Science 309:630–633

    PubMed  CAS  Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936

    PubMed  CAS  Google Scholar 

  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signalling enhances FLC expression and delays flowering. Development 134:2841–2850

    PubMed  CAS  Google Scholar 

  • Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419:74–77

    PubMed  CAS  Google Scholar 

  • Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A (2009) Fine mapping of haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics 183:1555–1563

    PubMed  CAS  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290

    PubMed  CAS  Google Scholar 

  • Ebana K, Shibaya T, Wu J, Matsubara K, Kanamori H, Yamane H, Yamanouchi U, Mizubayashi T, Kono I, Shomura A, Ito S, Ando T, Hori K, Matsumoto T, Yano M (2011) Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars. Theor Appl Genet 122:1199–1210

    PubMed  Google Scholar 

  • Eckenwalder JE (1996) Systematics and evolution of Populus. In: Stettler RF, Bradshaw HD Jr, Hellman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research, Ottawa, ON, pp 7–32

    Google Scholar 

  • Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JCW, Lynn JR, Straume M, Smith JQ, Millar AJ (2006) FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18:639–650

    PubMed  CAS  Google Scholar 

  • Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T (2001) Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant 11:95–103

    Google Scholar 

  • Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali I, Hassinen M, Sopanen T (2007) BpMADS4 has a central role in the inflorescence initiation in silver Birch (Betula pendula Roth). Physiol Plant 131:149–158

    PubMed  CAS  Google Scholar 

  • Ergon Å, Fang C, Jørgensen Ø, Aamlid TS, Rognli OA (2006) Quantitative trait loci controlling vernalisation requirement, heading time and number of panicles in meadow fescue (Festuca pratensis Huds). Theor Appl Genet 112:232–242

    PubMed  CAS  Google Scholar 

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609

    PubMed  CAS  Google Scholar 

  • Finnegan EJ, Kovac KA, Jaligot E, Sheldon CC, Peacock WJ, Dennis ES (2005) The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J 44:420–432

    CAS  Google Scholar 

  • Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50:s85–s98

    Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula) in apple (Malus x domestica) induces early flowering. Plant Breed 126:137–145

    CAS  Google Scholar 

  • Flachowsky H, Hanke M-V, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Fornara F, Panigrahi KCS, Gissot L, Sauerbrunn N, Rühl M, Jarillo J, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17:75–86

    PubMed  CAS  Google Scholar 

  • Foster KR, Morgan PW (1995) Genetic regulation of development in Sorghum bicolor. IX. The ma3R allele disrupts diurnal control diurnal control of gibberellin biosynthesis. Plant Physiol 108:337–343

    PubMed  CAS  Google Scholar 

  • Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM (2011) A map of local adaptation in Arabidopsis thaliana. Science 334:86–89

    PubMed  CAS  Google Scholar 

  • Frances SA (2006) Development of sugar beet. In: Draycott AP (ed) Sugar beet. Wiley-Blackwell, Chicester, pp 9–29

    Google Scholar 

  • Franks SJ, Sim S, Wels AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA 104:1278–1282

    PubMed  CAS  Google Scholar 

  • Frewen BE, Chen TH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD Jr (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154:837–845

    PubMed  CAS  Google Scholar 

  • Fu D, Dunbar M, Dubcovsky J (2007) Wheat VIN3-like PHD finger genes are up-regulated by vernalization. Mol Genet Genomics 277:301–313

    PubMed  CAS  Google Scholar 

  • Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Res 40:67–86

    Google Scholar 

  • Fukuoka S, Nonoue Y, Yano M (2010) Germplasm enhancement by developing advanced plant materials from diverse rice accessions. Breed Sci 60:509–517

    Google Scholar 

  • Gaut B (2012) Arabidopsis thaliana as a model for the genetics of local adaptation. Nat Genet 44:115–116

    PubMed  CAS  Google Scholar 

  • Gazzani S, Gendall AR, Lister C, Dean C (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 132:1107–1114

    PubMed  CAS  Google Scholar 

  • Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535

    PubMed  CAS  Google Scholar 

  • Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10:381–391

    PubMed  CAS  Google Scholar 

  • Gonzalez FG, Slafer GA, Miralles DJ (2005) Pre-anthesis development and number of fertile florets in wheat as affected by photoperiod sensitivity genes Ppd-D1 and Ppd-B1. Euphytica 146:253–269

    Google Scholar 

  • Gray LK, Gylander T, Mbogga MS, Chen PY, Hamann A (2011) Assisted migration to address climate change: recommendations for aspen reforestation in western Canada. Ecol Appl 21:1591–1603

    PubMed  Google Scholar 

  • Greb T, Mylne JS, Crevillen P, Geraldo N, An H, Gendall AR, Dean C (2007) The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Curr Biol 17:73–78

    PubMed  CAS  Google Scholar 

  • Green JO, Corall AJ, Terry RA (1971) Grass species and varieties. Relationships between stage of growth, yield and forage quality. GRI Technical Report No 8. Grassland Research Institute, Hurley, Maidenhead, Berkshire

    Google Scholar 

  • Green RM, Tingay S, Wang ZY, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584

    PubMed  CAS  Google Scholar 

  • Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot 103:1165–1172

    PubMed  CAS  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie DA, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    PubMed  CAS  Google Scholar 

  • Gu XY, Foley M (2007) Epistatic interactions of three loci regulate flowering time under short and long daylengths in a backcross population of rice. Theor Appl Genet 114:745–754

    PubMed  Google Scholar 

  • Hall D, Ma XF, Ingvarsson PK (2011) Adaptive evolution of the Populus tremula photoperiod pathway. Mol Ecol 20:1463–1474

    PubMed  Google Scholar 

  • Halliday KJ, Salter MG, Thinglass E, Whitelam GC (2003) Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J 33:875–885

    PubMed  CAS  Google Scholar 

  • Hammer GL, Sinclair TR, Chapman SC, van Oosterom E (2004) On systems thinking, systems biology, and the in silico plant. Plant Physiol 134:909–911

    PubMed  CAS  Google Scholar 

  • Hanano S, Domagalska MA, Nagy F, Davis SJ (2006) Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells 11:1381–1392

    PubMed  CAS  Google Scholar 

  • Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 135:677–684

    PubMed  CAS  Google Scholar 

  • Hayama R, Izawa T, Shimamoto K (2002) Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol 43:494–504

    PubMed  CAS  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    PubMed  CAS  Google Scholar 

  • He Y, Michaels SD, Amasino RM (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751–1754

    PubMed  CAS  Google Scholar 

  • Heide OM (1994) Control of flowering and reproduction in temperate grasses. New Phytol 128:347–362

    CAS  Google Scholar 

  • Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237

    PubMed  CAS  Google Scholar 

  • Heliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192

    Google Scholar 

  • Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T, in barley. Plant Physiol 46:183–192

    Google Scholar 

  • Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160

    Google Scholar 

  • Hicks KA, Albertson TM, Wagner DR (2001) EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13:1281–1292

    PubMed  CAS  Google Scholar 

  • Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS One 5:e10065

    PubMed  Google Scholar 

  • Hisamatsu T, King RW (2008) The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bot 59:3821–3829

    PubMed  CAS  Google Scholar 

  • Hodkinson TR, Renvoize S (2001) Nomenclature of Miscanthus x giganteus (Poaceae). Kew Bull 56:759–760

    Google Scholar 

  • Hodkinson TR, Renvoize SS, Chase MW (1997) Systematics of Miscanthus. Asp Appl Biol 49:189–198

    Google Scholar 

  • Hoecker U, Quail P (2001) The phytochrome A-specific signalling intermediate SPA1 interacts directly with COP1, and constitutive repressor of light signalling in Arabidopsis. J Biol Chem 276:38173–38178

    PubMed  CAS  Google Scholar 

  • Hoenicka H, Nowitzki O, Hanelt D, Fladung M (2008) Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Planta 227:1001–1011

    PubMed  CAS  Google Scholar 

  • Hoenicka H, Lautner S, Klingberg A, Koch G, El-Sherif F, Lehnhardt D, Zhang B, Burgert I, Odermatt J, Melzer S, Fromm J, Fladung M (2012a) Influence of over-expression of the Flowering Promoting Factor 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.). Planta 235:359–373

    PubMed  CAS  Google Scholar 

  • Hoenicka H, Lehnhardt D, Polak O, Fladung M (2012b) Early flowering and genetic containment studies in transgenic poplar. iForest 5:138–146

    Google Scholar 

  • Hori K, Kataoka T, Miura K, Yamaguchi M, Saka N, Nakahara T, Sunohara Y, Ebana K, Yano M (2012) Variation in heading date conceals quantitative trait loci for other traits of importance in breeding selection of rice. Breed Sci 62(3):223–234

    PubMed  Google Scholar 

  • Horton MW, Hancock AM, Huang YS, Toomajian C, Atwell S, Auton A, Muliyati NW, Platt A, Seperone FG, Vilhjálmsson BJ, Nordburg M, Borevitz JO, Bergelson J (2012) Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet 44:212–216

    PubMed  CAS  Google Scholar 

  • Howe GT, Bucciaglia PA, Hackett WP, Furnier GR, Cordonnier-Pratt MM, Gardner G (1998) Evidence that the phytochrome gene family in black cottonwood has one PHYA locus and two PHYB loci but lacks members of the PHYC/F and PHYE subfamilies. Mol Biol Evol 15:160–175

    PubMed  CAS  Google Scholar 

  • Hsu CY, Liu Y, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861

    PubMed  CAS  Google Scholar 

  • Hsu CY, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, DePamphilis CW, Luthe DS, Yuceer C (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci USA 108:10756–10761

    PubMed  CAS  Google Scholar 

  • Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P (2012a) Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336:75–79

    PubMed  CAS  Google Scholar 

  • Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012b) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839

    PubMed  CAS  Google Scholar 

  • Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297

    PubMed  CAS  Google Scholar 

  • Ingvarsson PK, García MV, Hall D, Luquez V, Jansson S (2006) Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics 172:1845–1853

    PubMed  CAS  Google Scholar 

  • Inoue M, Gao ZS, Hirata M, Fujimori M, Cai HW (2004) Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome 47:57–65

    PubMed  CAS  Google Scholar 

  • Irish VF (2010) The flowering of Arabidopsis flower development. Plant J 61:1014–1028

    PubMed  CAS  Google Scholar 

  • Ishimaru T, Hirabayashi H, Kuwagata T, Ogawa T, Kondo M (2012) The early-morning flowering trait of rice reduces spikelet sterility under windy and elevated temperature conditions at anthesis. Plant Prod Sci 15:19–22

    Google Scholar 

  • Itoh H, Nonoue Y, Yano M, Izawa T (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42:635–638

    PubMed  CAS  Google Scholar 

  • Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58:3091–3097

    PubMed  CAS  Google Scholar 

  • Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22:391–399

    PubMed  CAS  Google Scholar 

  • Jagadish SVK, Craufurd PQ, Wheeler TR (2008) Phenotyping parents of mapping populations of rice for heat tolerance during flowering. Crop Sci 48:1140–1146

    Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    PubMed  CAS  Google Scholar 

  • Jeger MJ, Pautasso M (2008) Plant disease and global change – the importance of long-term data sets. New Phytol 177:8–11

    PubMed  Google Scholar 

  • Jensen LB, Andersen JR, Frei U, Xing YZ, Taylor C, Holm PB, Lubberstedt TL (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536

    PubMed  CAS  Google Scholar 

  • Jensen E, Farrar K, Thomas-Jones S, Hastings A, Donnison I, Clifton-Brown J (2011a) Characterization of flowering time diversity in Miscanthus species. Glob Change Biol Bioenergy 3:387–500

    Google Scholar 

  • Jensen E, Squance M, Hastings A, Jones S, Farrar K, Huang L, King R, Clifton-Brown J, Donnison I (2011b) Understanding the value of hydrothermal time on flowering in Miscanthus species. Asp Appl Biol 112:181–189

    Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    PubMed  CAS  Google Scholar 

  • Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18:235–265

    Google Scholar 

  • Julian C, Rodrigo J, Herrero M (2011) Stamen development and winter dormancy in apricot (Prunus armeniaca). Ann Bot 108:617–625

    PubMed  CAS  Google Scholar 

  • Jung C, Muller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573

    PubMed  CAS  Google Scholar 

  • Junttila O (1980) Flower bud differentiation in Salix pentandra as affected by photoperiod, temperature and growth regulators. Physiol Plant 49:127–134

    CAS  Google Scholar 

  • Kania T, Russenberger D, Peng S, Apel K, Melzer S (1997) FPF1 promotes flowering in Arabidopsis. Plant Cell 9:1327–1338

    PubMed  CAS  Google Scholar 

  • Karsai I, Szűcs P, Mészáros K, Filichkina T, Hayes PM, Skinner JS, Láng L, Bedö Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative x winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466

    PubMed  CAS  Google Scholar 

  • Keller SR, Levsen N, Ingvarsson PK, Olson MS, Tiffin P (2011) Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L. Genetics 188:941–952

    PubMed  CAS  Google Scholar 

  • Keller SR, Levsen N, Olson MS, Tiffin P (2012) Local adaptation in the flowering time gene network of balsam poplar, Populus balsamifera L. Mol Biol Evol 29:3143–3152

    PubMed  CAS  Google Scholar 

  • Khan S, Rowe SC, Harmon FG (2010) Coordination of the maize transcriptome by a conserved circadian clock. BMC Plant Biol 10:126

    PubMed  Google Scholar 

  • Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–360

    PubMed  CAS  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    PubMed  CAS  Google Scholar 

  • Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135:767–774

    PubMed  CAS  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450

    PubMed  CAS  Google Scholar 

  • Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551

    PubMed  Google Scholar 

  • Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M (2009) Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol 50:1215–1231

    PubMed  CAS  Google Scholar 

  • Kvaalen H, Johnsen O (2007) Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol 177:49–59

    PubMed  Google Scholar 

  • Langridge J (1957) The aseptic culture of Arabidopsis thaliana (L.) Heynh. Aust J Biol Sci 10:243–252

    CAS  Google Scholar 

  • Lantican MA, Pingali PL, Rajaram S (2003) Is research on marginal lands catching up? The case of unfavourable wheat growing environments. Agric Econ 29:353–361

    Google Scholar 

  • Lee I, Bleecker A, Amasino R (1993) Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol Gen Genet 237:171–176

    PubMed  CAS  Google Scholar 

  • Lee I, Aukerman M, Gore S, Lohman K, Michaels S, Weaver L, John M, Feldmann K, Amasino R (1994) Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6:75–83

    PubMed  CAS  Google Scholar 

  • Lee J, Yoo S, Park S, Hwang I, Lee J, Ahn J (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402

    PubMed  CAS  Google Scholar 

  • Lee J, Oh M, park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J 55:832–843

    PubMed  CAS  Google Scholar 

  • Leida C, Romeu JF, García B, Ríos G, Badenes ML (2012) Gene expression analysis of chilling requirements for flower bud break in peach. Plant Breed 131:329–334

    CAS  Google Scholar 

  • Leseberg CH, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94

    PubMed  CAS  Google Scholar 

  • Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297:243–246

    PubMed  CAS  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    CAS  Google Scholar 

  • Lewis S, Faricelli ME, Appendino ML, Valárik M, Dubcovsky J (2008) The chromosome region including the earliness per se locus Eps-A m 1 affects the duration of early development phases and spikelet number in diploid wheat. J Exp Bot 59:3595–3607

    PubMed  CAS  Google Scholar 

  • Li D, Liu C, Shen L, Robertson M, Helliwell CA, Ito T, Meyerowitz E, Yu H (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15:110–120

    PubMed  CAS  Google Scholar 

  • Li J, Li Y, Chen S, An L (2010) Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J Exp Bot 61:4221–4230

    PubMed  CAS  Google Scholar 

  • Li J, Terzaghi W, Deng XW (2012) Genomic basis for light control of plant development. Protein Cell 3:106–116

    PubMed  CAS  Google Scholar 

  • Lim J, Moon YH, An G, Jang SK (2000) Two rice MADS domain proteins interact with OsMADS1. Plant Mol Biol 44:513–527

    PubMed  CAS  Google Scholar 

  • Lim MH, Kim J, Kim YS, Chung KS, Sea YH, Lee I, Hong CB, Kim HJ, Park CM (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16:731–740

    PubMed  CAS  Google Scholar 

  • Lin HX, Ashikari M, Yamanouchi U, Sasaki T, Yano M (2002) Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breed Sci 52:35–41

    CAS  Google Scholar 

  • Lin HX, Liang ZW, Sasaki T, Yano M (2003) Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breed Sci 53:51–59

    CAS  Google Scholar 

  • Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signalling in Arabidopsis. Science 318:1302–1305

    PubMed  CAS  Google Scholar 

  • Lingle SE (1987) Sucrose metabolism in the primary culm of sweet sorghum during development. Crop Sci 27:1214–1219

    CAS  Google Scholar 

  • Linkosalo T, Häkkinen R, Terhivuo J, Tuomenvirta H, Hari P (2009) The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agric Meteorol 149:453–461

    Google Scholar 

  • Liu C, Chen H, Er H, Soo H, Kumar P, Han J, Liou Y, Yu H (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481–1491

    PubMed  CAS  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002

    Google Scholar 

  • Lukac M, Gooding MJ, Griffiths S, Jones HE (2012) Asynchronous flowering and within-plant flowering diversity in wheat and the implications for crop resilience to heat. Ann Bot 109:843–850

    PubMed  Google Scholar 

  • Luquez V, Hall D, Albrectsen BR, Karlsson J, Ingvarsson P, Jansson S (2008) Natural phenological variation in aspen (Populus tremula): the SwAsp collection. Tree Genet Genomes 4:279–292

    Google Scholar 

  • Ma X-F, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T, Flavell R (2012) High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS One 7:1–11

    Google Scholar 

  • Maas L, McClung A, McCouch S (2010) Dissection of a QTL reveals an adaptive, interacting gene complex associated with transgressive variation for flowering time in rice. Theor Appl Genet 120:895–908

    PubMed  CAS  Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    PubMed  CAS  Google Scholar 

  • Mackay I, Horwell A, Garner J, White J, McKee J, Philpott H (2011) Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor Appl Genet 122:225–238

    PubMed  CAS  Google Scholar 

  • Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737–745

    PubMed  CAS  Google Scholar 

  • Major DJ, Rood SB, Miller FR (1990) Temperature and photoperiod effects mediated by the sorghum maturity genes. Crop Sci 30:305–310

    Google Scholar 

  • Manzano D, Marquardt S, Jones AM, Barule I, Li F, Dean C (2009) Altered interactions within FY/AtCPSF complexes required for Arabidopsis DAC-mediated chromatin silencing. Proc Natl Acad Sci USA 106:8772–8777

    PubMed  CAS  Google Scholar 

  • Martinez-Zapater J, Somerville CR (1990) Effect of light quality and vernalization on late-flowering mutants of Arabidopsis thaliana. Plant Physiol 92:770–776

    PubMed  CAS  Google Scholar 

  • Matsubara K, Kono I, Hori K, Nonoue Y, Ono N, Shomura A, Mizubayashi T, Yamamoto S, Yamanouchi U, Shirasawa K, Nishio T, Yano M (2008a) Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor Appl Genet 117:935–945

    PubMed  CAS  Google Scholar 

  • Matsubara K, Yamanouchi U, Wang ZX, Minobe Y, Izawa T, Yano M (2008b) Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol 148:1425–1435

    PubMed  CAS  Google Scholar 

  • Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M (2012) Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol 53:709–716

    PubMed  CAS  Google Scholar 

  • Méndez-Vigo B, Picó FX, Ramiro M, Martínez-Zapater JM, Alonso-Blanco C (2011) Altitudinal and climatic adaptation is mediated by flowering traits and FLC, FRI and PHYC genes in Arabidopsis. Plant Physiol 157:1942–1955

    PubMed  Google Scholar 

  • Mertz O, Halsnaes K, Olesen JE, Rasmussen K (2009) Adaptation to climate change in developing countries. Environ Manag 43:743–752

    Google Scholar 

  • Messina CD, Jones JW, Boote KJ, Vallejos CE (2006) A gene-based model to simulate soybean development and yield responses to environment. Crop Sci 46:456–466

    CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 13:935–941

    Google Scholar 

  • Michaels SD, Amasino RM (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutants but not responsiveness to vernalization. Plant Cell 13:935–941

    PubMed  CAS  Google Scholar 

  • Michaels SD, He Y, Scortecci KS, Amasino RM (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of a summer-annual flowering behaviour in Arabidopsis. Proc Natl Acad Sci USA 100:10102–10107

    PubMed  CAS  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    PubMed  CAS  Google Scholar 

  • Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, Puzey JR, Etherington E, Sheng X, Meilan R, Strauss SH, Brunner AM (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J 62:674–688

    PubMed  CAS  Google Scholar 

  • Moon J, Suh S, Lee H, Choi K, Hong C, Paek N, Kim S, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellins signals for flowering in Arabidopsis. Plant J 35:613–623

    PubMed  CAS  Google Scholar 

  • Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci USA 97:12649–12654

    PubMed  Google Scholar 

  • Munerati O (1931) L’eredita della tendenza alla annualita nella commune barbabietola coltivata. Z Zuchtung Reihe A, Pflanzenzucht 17:84–89

    Google Scholar 

  • Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 108:16469–16474

    PubMed  CAS  Google Scholar 

  • Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Z, Breggermann E, Archibald R, Ananiev EV, Danilevskaya OA (2006) Delayed flowering 1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol 142:1523–1536

    PubMed  CAS  Google Scholar 

  • Mutasa-Göttgens ES, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60:1979–1989

    PubMed  Google Scholar 

  • Mutasa-Göttgens E, Qi A, Mathews A, Thomas S, Phillips A, Hedden P (2008) Modification of gibberellin signalling (metabolism and signal transduction) in sugar beet: analysis of potential targets for crop improvement. Transgenic Res 18:301–308

    PubMed  Google Scholar 

  • Mutasa-Göttgens ES, Qi A, Zhang W, Schulze-Buxloh G, Jennings A, Hohmann W, Müller AE, Hedden P (2010) Bolting and flowering control in sugar beet: relationships and effects of gibberellin, the bolting gene B and vernalization. AoB Plants 2010:plq012

    Google Scholar 

  • Mutasa-Göttgens ES, Joshi A, Holmes HF, Hedden P, Göttgens B (2012) A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses. BMC Genomics 13:99

    PubMed  Google Scholar 

  • Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29:743–750

    PubMed  CAS  Google Scholar 

  • Nakamichi N (2011) Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52:1709–1718

    PubMed  CAS  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    PubMed  CAS  Google Scholar 

  • Nonoue Y, Fujino K, Hirayama Y, Yamanouchi U, Lin S, Yano M (2008) Detection of quantitative trait loci controlling extremely early heading in rice. Theor Appl Genet 116:715–722

    PubMed  CAS  Google Scholar 

  • O’Toole JC (1982) Adaptation of rice to drought-prone environments. Drought resistance in crops with emphasis on rice. International Rice Research Institute, Los Baños, pp 195–213

    Google Scholar 

  • Ogiso E, Takahashi Y, Sasaki T, Yano M, Izawa T (2010) The role of casein kinase II in flowering time regulation has diversified during evolution. Plant Physiol 152:808–820

    PubMed  CAS  Google Scholar 

  • Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B (2009) Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci USA 106:8386–8391

    PubMed  CAS  Google Scholar 

  • Olsen JE, Juntilla O, Nilsen J, Eriksson ME, Martinussen I, Olsson O, Sandberg G, Moritz T (1997) Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J 12:1339–1350

    CAS  Google Scholar 

  • Olson SN, Ritter K, Rooney W, Kemanian A, McCarl BA, Zhang Y, Hall S, Packer D, Mullet J (2012) High biomass yield energy sorghum: developing a genetic model for C4 grass bioenergy plants. Biofuel Bioprod Biorefin. doi: 10.1002/bbb.1357

  • Osnato M, Castillejo C, Matías-Hernández L, Pelaz S (2012) TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering time in Arabidopsis. Nat Commun 3:808

    PubMed  Google Scholar 

  • Owen FV, Stout M (1940) Photothermal induction of flowering in sugar beet. J Agric Res 61:101–124

    Google Scholar 

  • Owens JN (1995) Constraints to seed production: temperate and tropical forest trees. Tree Physiol 15:477–484

    PubMed  Google Scholar 

  • Panella L (2010) Sugar beet as an energy crop. Sugar Technol 12:288–293

    CAS  Google Scholar 

  • Paux E, Sourdille P, Mackay I, Feuillet C (2011) Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 30(5):1071–1088

    PubMed  Google Scholar 

  • Peng LT, Shi ZY, Li L, Shen GZ, Zhang JL (2008) Overexpression of transcription factor OsLFL1 delays flowering time in Oryza sativa. J Plant Physiol 165:876–885

    PubMed  CAS  Google Scholar 

  • Phillips NG, Buckley TN, Tissue DT (2008) Capacity of old trees to respond to environmental change. J Integr Plant Biol 50:1355–1364

    PubMed  CAS  Google Scholar 

  • Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400

    PubMed  CAS  Google Scholar 

  • Pin PA, Zhang W, Vogt SH, Dally N, Büttner B, Schulze-Buxloh G, Jelly NS, Chia TYP, Mutasa-Göttgens ES, Dohm JC, Himmelbauer H, Weisshaar B, Kraus J, Gielen JJL, Lommel M, Weyens G, Wahl B, Schechert A, Nilsson O, Jung C, Kraft T, Müller AE (2012) A pseudo-response regulator gene controls life cycle adaptation in beet. Curr Biol 22:1–7

    Google Scholar 

  • Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301:334–336

    PubMed  CAS  Google Scholar 

  • Porri A, Torti S, Romera-Branchat M, Coupland G (2012) Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139:2198–2209

    PubMed  CAS  Google Scholar 

  • Purwestri YA, Ogaki Y, Tamaki S, Tsuji H, Shimamoto K (2009) The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol 50:429–438

    PubMed  CAS  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription-factors. Cell 80:847–857

    PubMed  CAS  Google Scholar 

  • Quinby JR (1967) The genetic control of flowering and growth in sorghum. Adv Agron 25:125–162

    Google Scholar 

  • Reeves PA, He Y, Schmitz RJ, Amasino RM, Panella LW, Richards CM (2007) Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics 176:295–307

    PubMed  CAS  Google Scholar 

  • Reynolds MP, Ortiz R (2010) Adapting crops to climate change: a summary. In: Reynolds MP (ed) Climate change and crop production. CABI, Wallingford, Oxfordshire, pp 1–8

    Google Scholar 

  • Reynolds MP, Hays D, Chapman S (2010) Breeding for adaptation to heat and drought stress. In: Reynolds MP (ed) Climate change and crop production. CABI, Wallingford, Oxfordshire, pp 71–91

    Google Scholar 

  • Rigby JR, Porporato A (2008) Spring frost risk in a changing climate. Geophys Res Lett 35:L12703

    Google Scholar 

  • Rodgers-Melnick E, Mane SP, Dharmawardhana P, Slavov GT, Crasta OR, Strauss SH, Brunner AM, Difazio SP (2012) Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus. Genome Res 22:95–105

    PubMed  CAS  Google Scholar 

  • Rohde A, Junttila O (2008) Remembrances of an embryo: long-term effects on phenology traits in spruce. New Phytol 177:2–5

    PubMed  Google Scholar 

  • Rooney WL, Aydin S (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400

    Google Scholar 

  • Rooney WL, Blumenthal J, Bean B, Mullet JW (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuel Bioprod Biorefin 1:147–157

    CAS  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–358

    PubMed  CAS  Google Scholar 

  • Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245

    PubMed  CAS  Google Scholar 

  • Rounsaville TJ, Touchell DH, Ranney TC (2011) Fertility and reproductive pathways in diploid and triploid Miscanthus sinensis. HortScience 46:1353–1357

    Google Scholar 

  • Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ 32:1412–1427

    PubMed  CAS  Google Scholar 

  • Saito H, Ogiso-Tanaka E, Okumoto Y, Yoshitake Y, Izumi H, Yokoo T, Matsubara K, Hori K, Yano M, Inoue H, Tanisaka T (2012) Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Plant Cell Physiol 53:717–728

    PubMed  CAS  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann Em Li B, Hainey CF, Radocic S, Zaina G, Rafalski J-A, Tingey SV, Miao G-H, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381

    PubMed  CAS  Google Scholar 

  • Sánchez-Bermejo E, Méndez-Vigo B, Picó FZ, Martínez-Zapater JM, Alonso-Blanco C (2012) Novel natural alleles at FLC and LVR loci account for enhanced vernalization responses in Arabidopsis thaliana. Plant Cell Environ 35(9):1672–1684

    PubMed  Google Scholar 

  • Shaw LM, Turner AS, Laurie DA (2012) The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). Plant J 71:71–84

    PubMed  CAS  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458

    PubMed  CAS  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 97:3753–3758

    PubMed  CAS  Google Scholar 

  • Shibaya T, Nonoue Y, Ono N, Yamanouchi U, Hori K, Yano M (2011) Genetic interactions involved in the inhibition of heading by heading date QTL, Hd2 in rice under long-day conditions. Theor Appl Genet 123:1133–1143

    PubMed  Google Scholar 

  • Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, Shitsukawa N, Abe T, Kawahigashi H, Kikuchi R, Handa H, Murai K (2009) A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. Plant J 58:668–681

    PubMed  CAS  Google Scholar 

  • Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordburg M, Dean C (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol 138:1163–1173

    PubMed  CAS  Google Scholar 

  • Shinozuka H, Hisano H, Ponting RC, Cogan NOI, Jones ES, Forster JW, Yamada T (2005) Molecular cloning and genetic mapping of perennial ryegrass casein protein kinase 2 alpha-subunit genes. Theor Appl Genet 112:167–177

    PubMed  CAS  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta Stone of flowering time? Science 296:285–289

    PubMed  CAS  Google Scholar 

  • Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C (2003) FY is and RNA 3’ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113:3–25

    Google Scholar 

  • Skøt L, Humphreys MO, Armstead I, Heywood S, Skøt KP, Sanderson R, Thomas ID, Chorlton KH, Hamilton NRS (2005) An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.). Mol Breed 15:233–245

    Google Scholar 

  • Skøt L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID (2007) Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 177:535–547

    PubMed  Google Scholar 

  • Skøt L, Thomas A, Skøt K, Thorogood D, Latypova G, Asp T, Armstead I (2011) Allelic variation in the Lolium perenne L. (perennial ryegrass) FLOWERING LOCUS T (LpFT3) gene is associated with changes in flowering time across a range of germplasm populations. Plant Physiol 155:1013–1022

    PubMed  Google Scholar 

  • Song Y, Ma K, Bo W, Zhang Z, Zhang D (2012) Sex-specific DNA methylation and gene expression in andromonoecious poplar. Plant Cell Rep 31:1393–1405

    PubMed  CAS  Google Scholar 

  • Soussana J-F, Graux A-I, Tubiello FN (2010) Improving the use of modelling for projections of climate change impacts on crops and pastures. J Exp Bot 61:2217–2228

    Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    PubMed  CAS  Google Scholar 

  • Stenøien HK, Fenster CB, Kuittinen H, Savolainen O (2002) Quantifying latitudinal clines to light responses in natural populations of Arabidopsis thaliana (Brassicaceae). Am J Bot 89:1064–1068

    Google Scholar 

  • Stinchcombe JR, Weinig C, Ungerer M, Olsen KM, Mays C, Halldorsdottir SS, Purugganan MD, Schmitt J (2004) A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc Natl Acad Sci USA 101:4712–4717

    PubMed  CAS  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    PubMed  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164

    PubMed  CAS  Google Scholar 

  • Sung S, Schmitz RJ, Amasino RM (2006) A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes Dev 20:3244–3248

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927

    PubMed  CAS  Google Scholar 

  • Takeuchi Y, Ebitani T, Yamamoto T, Sato H, Ohta H, Hirabayashi H, Kato H, Ando I, Nemoto H, Imbe T, Yano M (2006) Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection. Breed Sci 56:405–413

    CAS  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    PubMed  CAS  Google Scholar 

  • Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GR (2010) Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Mol Biol 73:49–65

    PubMed  CAS  Google Scholar 

  • Thornley JHM, Johnson IR (1990) Plant and crop modelling: a mathematical approach to plant and crop physiology. Clarendon/Oxford University Press, Oxford/New York

    Google Scholar 

  • Trevaskis B (2010) The central role of the VERNALIZATION1 gene in the vernalization response of cereals. Funct Plant Biol 37:479–487

    CAS  Google Scholar 

  • Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA 100:13099–13104

    PubMed  CAS  Google Scholar 

  • Tsuji H, Taoka KI, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol 14:45–52

    PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    PubMed  CAS  Google Scholar 

  • Uga Y, Nonoue Y, Liang Z, Lin H, Yamamoto S, Yamanouchi U, Yano M (2007) Accumulation of additive effects generates a strong photoperiod sensitivity in the extremely late-heading rice cultivar ‘Nona Bokra’. Theor Appl Genet 114:1457–1466

    PubMed  CAS  Google Scholar 

  • Uptmoor R, Schrag T, Stützel H, Esch E (2008) Crop model based QTL analysis across environments and QTL based estimation of time to floral induction and flowering in Brassica oleracea. Mol Breed 21:205–216

    Google Scholar 

  • Uptmoor R, Osei-Kwarteng M, Gürtler S, Stützel H (2009) Modelling the effects of drought stress on leaf development in a Brassica oleracea doubled haploid population using two-phase linear functions. J Am Soc Hortic Sci 134:543–552

    Google Scholar 

  • Uptmoor R, Li J, Schrag T, Stützel H (2012) Prediction of flowering time in Brassica oleracea using a quantitative trait loci-based phenology model. Plant Biol 14:179–189

    PubMed  CAS  Google Scholar 

  • Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO, Taylor MS, Rawlins JNP, Mott R, Flint J (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38:879–887

    PubMed  CAS  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006

    PubMed  CAS  Google Scholar 

  • Van Dijk H (2009) Evolutionary change in flowering phenology in the iteroparous herb Beta vulgaris ssp. maritima: a search for the underlying mechanisms. J Exp Bot 60:3143–3155

    PubMed  Google Scholar 

  • Ward JK, Strain BR (1999) Elevated CO2 studies: past, present and future. Tree Phys 19:211–220

    Google Scholar 

  • Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758

    PubMed  CAS  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    PubMed  CAS  Google Scholar 

  • Welch SM, Roe JL, Dong Z (2003) A genetic neural network model of flowering time control in Arabidopsis thaliana. Agron J 95:71–81

    Google Scholar 

  • White JW, Herndl M, Hunt LA, Payne TS, Hoogenboom G (2008) Simulation-based analysis of effects of Vrn and Ppd loci on flowering in wheat. Crop Sci 48:678–687

    Google Scholar 

  • Wigge PA (2011) FT, a mobile developmental signal in plants. Curr Biol 21:R374–R378

    PubMed  CAS  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    PubMed  CAS  Google Scholar 

  • Wilhelm EP, Turner AS, Laurie DA (2009) Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet 118:285–294

    PubMed  CAS  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    PubMed  CAS  Google Scholar 

  • Wood CC, Robertson M, Tanner G, Peacock WJ, Dennis EJ, Hellwell CA (2006) The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci USA 103:14631–14636

    PubMed  Google Scholar 

  • Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheat. Euphytica 89:49–57

    Google Scholar 

  • Wu RF, Shen JG, Yan WX, Zhang H (2009) Impact of climate warming on phenophase of Populus tomentosa in Inner Mongolia. Chin J Appl Ecol 20:785–790

    Google Scholar 

  • Wurr DCE, Fellows JR, Fuller MP (2004) Simulated effects of climate change on the production pattern of winter cauliflower in the UK. Sci Hortic 101:359–372

    Google Scholar 

  • Xu J, Liu Y, Liu J, Cao M, Wang J, Lan H, Xu L, Lu Y, Pan G, Rong T (2012) The genetic architecture of flowering time and photoperiod sensitivity in maize as revealed by QTL review and meta-analysis. J Integr Plant Biol 54:358–373

    PubMed  CAS  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    PubMed  CAS  Google Scholar 

  • Yamada T, Jones ES, Cogan NOI, Vecchies AC, Nomura T, Hisano H, Shimamoto Y, Smith KF, Hayward MD, Forster JW (2004) QTL analysis of morphological, developmental, and winter hardiness-associated traits in perennial ryegrass. Crop Sci 44:925–935

    CAS  Google Scholar 

  • Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277

    PubMed  CAS  Google Scholar 

  • Yamamoto E, Yonemaru JI, Yamamoto T, Yano M (2012) OGRO: overview of functionally characterized genes in rice online database. Rice 5:26. doi:10.1186/1939-8433-5-26

    Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J Exp Bot 62:3481–3488

    PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    PubMed  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    PubMed  CAS  Google Scholar 

  • Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF (2011a) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330

    PubMed  CAS  Google Scholar 

  • Yan J, Chen W, Luo FAN, Ma H, Meng A, Li X, Zhu M, Li S, Zhou H, Zhu W, Han BIN, Ge S, Li J, Sang TAO (2011b) Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy 4:49–60

    Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    PubMed  CAS  Google Scholar 

  • Yano M, Kojima S, Takahashi Y, Lin HX, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127:1425–1429

    PubMed  CAS  Google Scholar 

  • Yant L, Mathieu J, Schmid M (2009) Just say no: floral repressors help Arabidopsis bide time. Curr Opin Plant Biol 12:580–586

    PubMed  CAS  Google Scholar 

  • Yerushalmi S, Yakir E, Green RM (2011) Circadian clocks and adaptation in Arabidopsis. Mol Ecol 20:1155–1165

    PubMed  Google Scholar 

  • Yin X, Struik PC (2010) Modelling the crop: from system dynamics to systems biology. J Exp Bot 61:2171–2183

    PubMed  CAS  Google Scholar 

  • Yin X, Struik PC, Tang J, Qi C, Liu T (2005a) Model analysis of flowering phenology in recombinant inbred lines of barley. J Exp Bot 56:959–965

    PubMed  CAS  Google Scholar 

  • Yin X, Struik PC, van Eeuwijk FA, Stam P, Tang J (2005b) QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. J Exp Bot 56:967–976

    PubMed  CAS  Google Scholar 

  • Yonemaru JI, Yamamoto T, Fukuoka S, Uga Y, Hori K, Yano M (2010) Q-TARO: QTL annotation rice online database. Rice 3:194–203

    Google Scholar 

  • Youens-Clark K, Buckler E, Casstevens T, Chen C, DeClerck G, Derwent P, Dharmawardhana P, Jaiswal P, Kersey P, Karthikeyan AS, Lu J, McCouch SR, Ren L, Yu C-W, Liu X, Luo M, Chen C, Lin X, Tian G, Lu Q, Cui Y, Wu K (2011) HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering time in Arabidopsis. Plant Physiol 156:173–184

    Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    PubMed  Google Scholar 

  • Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci USA 107:22151–22156

    PubMed  CAS  Google Scholar 

  • Yu C-W, Liu X, Luo M, Chen C, Lin X, Tian G, Lu Q, Cui Y, Wu K (2011) HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol 156:173–184

    PubMed  CAS  Google Scholar 

  • Zhang H, Harry DE, Yuceer C, Hsu CY, Vikram V, Shevchenko O, Etherington E, Strauss SH (2010) Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot 61:2549–2560

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors were supported by the following grants: AB (BB/I002561/1), EJ (BB/E014933/1), CH (BBSRC/DEFRA LK0863 GIANT), IA and DT (BB/J004405/1), MY and KH (Grants from the Ministry of Agriculture, Forestry and Fisheries of Japan - Integrated Research Project for Plant, Insect, and Animal using Genome Technology, IP1001, and Genomics for Agricultural Innovation, GPN0001), MF and HH (Federal Office for Agriculture and Food (BLE) grant #: 511-06.01-28-1-45.005-10 and German Research Foundation (DFG) grant #:FL 263/21-1), JC (BB/J002542/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cockram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bentley, A.R. et al. (2013). Flowering Time. In: Kole, C. (eds) Genomics and Breeding for Climate-Resilient Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37048-9_1

Download citation

Publish with us

Policies and ethics