Skip to main content

Molecular Mapping and Breeding for Genes/QTLS Related to Climate Change

  • Chapter
  • First Online:
Genomics and Breeding for Climate-Resilient Crops

Abstract

Through selection by humans, crop plants are adapted to produce optimal yield in the areas where they are cultivated. Climate changes may cause stress to plants, disturb plant growth, and decrease plant yield. Food shortages due to crop failure may cause hunger particularly in poor countries. Therefore, it is important to develop new crop cultivars that can adapt to climate changes. This chapter summarizes quantitative trait loci (QTL) analysis and findings for candidate genes of traits related to tolerance to drought, heat, salinity, macronutrient and micronutrient deficiency, flooding, frost, particularly in major cereal crops. In addition, QTL studies on flowering time of cereal crops are also deliberated. Flowering time is a critical plant phase that determines the transition from the vegetative to the reproductive phase. The optimal time of flowering largely affects the overall yield. Information obtained from QTL analysis has been utilized in the development of stress-tolerant cultivars. Indeed, several stress-tolerant cultivars have been released in stress-prone areas. However, QTLs for most of the traits have not been elucidated. Fortunately, development in sequencing technologies has accelerated elucidation of the genomic regions conferring stress tolerance. This chapter also provides information regarding several recent technologies and approaches in QTL/gene mapping and also in plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard V, Veisz O, Koszegi B, Rousset M, Le Gouis J, Martre P (2012) The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature. J Exp Bot 63:847–857

    PubMed  CAS  Google Scholar 

  • Alm V, Busso CS, Ergon A, Rudi H, Larsen A, Humphreys MW, Rognli OA (2011) QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 123:369–382

    PubMed  Google Scholar 

  • Armstead I, Huang L, Ravagnani A, Robson P, Ougham H (2009) Bioinformatics in the orphan crops. Brief Bioinformat 10:645–653

    CAS  Google Scholar 

  • Atwell S, Huang YS, Viljalmsson BJ, Willems G, Horton M et al (2010) Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines. Nature 465:627–631

    PubMed  CAS  Google Scholar 

  • Baga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genom 7:53–68

    CAS  Google Scholar 

  • Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill DJ (2010) Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 3:138–147

    Google Scholar 

  • Barrett B, Bayram M, Kidwell K, Weber WE (2002) Identifying AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat using reciprocal mapping populations. Plant Breed 121:400–406

    CAS  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    PubMed  CAS  Google Scholar 

  • Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–518

    Google Scholar 

  • Bonnila P, Dvorak J, Mackell D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76

    Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718

    PubMed  CAS  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    PubMed  CAS  Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field crops Res 90:19–34

    Google Scholar 

  • Cao J, Schneeberger K, Ossowski S et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963

    PubMed  CAS  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    PubMed  CAS  Google Scholar 

  • Cockram J, Chiapparino E, Taylor SA, Stamati K, Donini P, Laurie DA, O’Sullivan DM (2007) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor Appl Genet 115:993–1001

    PubMed  CAS  Google Scholar 

  • Cockram J, Jones H, O’Sullivan DM (2011) Genetic variation at flowering time loci in wild and cultivated barley. Plant Genet Res 9:264–267

    CAS  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    PubMed  CAS  Google Scholar 

  • Coque M, Gallais A (2006) Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theor Appl Genet 112:1205–1220

    PubMed  CAS  Google Scholar 

  • Coque M, Martin A, Veyrieras JB, Hirel B, Gallais A (2008) Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences. Theor Appl Genet 117:729–747

    PubMed  CAS  Google Scholar 

  • Courtois B, Ahmadi N, Khowaja F, Price AH, Rami JF, Frouin J, Hamelin C, Ruiz M (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2:115–128

    Google Scholar 

  • Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132:1849–1860

    PubMed  CAS  Google Scholar 

  • Dhillon T, Pearce S, Stockinger E, Distelfeld A, Li C, Knox AK, Vashegyi I, Vagujfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153:1846–1858

    PubMed  CAS  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:1–7

    Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936

    Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97:968–975

    CAS  Google Scholar 

  • Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437

    PubMed  Google Scholar 

  • Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A (2009) Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics 183:1555–1563

    PubMed  CAS  Google Scholar 

  • Ebana K, Shibaya T, Wu J, Matsubara K, Kanamori H et al (2011) Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars. Theor Appl Genet 122:1199–1210

    PubMed  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    CAS  Google Scholar 

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609

    PubMed  CAS  Google Scholar 

  • Foolad MR (1997) Genetic basis of physiological traits related to salt tolerance in tomato, Lycopersicon esculentum Mill. Plant Breed 116:53–58

    CAS  Google Scholar 

  • Foolad MR (1999) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42:727–734

    CAS  Google Scholar 

  • Foolad MR, Chen FQ (1999) RFLP mapping of QTLs conferring salt tolerance during the vegetative stage in tomato. Theor Appl Genet 99:235–243

    CAS  Google Scholar 

  • Foolad MR, Zhang LP, Lin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454

    PubMed  CAS  Google Scholar 

  • Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680

    PubMed  CAS  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091

    PubMed  CAS  Google Scholar 

  • Fu D, Szücs P, Yan L, Helguera M, Skinner J, Hayes P, Dubcovsky J (2005) Large deletions in the first intron of the VRN-1 vernalization gene are associated with spring growth habit in barley and polyploid wheat. Mol Genet Genomics 273:54–65

    PubMed  CAS  Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA 105:16814–16819

    PubMed  CAS  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene-responsive-like factors regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    PubMed  CAS  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator Sub1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    PubMed  CAS  Google Scholar 

  • Galiba G, Sutka J (1988) A genetic study of frost resistance in wheat callus culture. Plant Breed 101:132–136

    Google Scholar 

  • Galiba G, Quarrie SA, Sutka J, Morgounov A (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    CAS  Google Scholar 

  • Galiba G, Vágújfalvi A, Li C, Soltesz A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19

    CAS  Google Scholar 

  • Gallais A, Hirel B (2004) An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot 55:295–306

    PubMed  CAS  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed  CAS  Google Scholar 

  • Gregorio GB (1997) Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP). PhD dissertation, University of the Philippines, Los Baños College, Laguna, Philippines, 118 p

    Google Scholar 

  • Gregorio GB, Senadhira D (1993) Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theor Appl Genet 83:333–338

    Google Scholar 

  • Guedira M, Brown-Guedira G, Van Sanford D, Sneller C, Souza E, Marshall D (2010) Distribution of Rht genes in modern and historic winter wheat cultivars from the Eastern and Central USA. Crop Sci 50:1811–1822

    CAS  Google Scholar 

  • Guo B, Sleper DA, Nguyen HT, Arelli PR, Shannon JG (2006) Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A. Crop Sci 46:224–233

    CAS  Google Scholar 

  • Habash D, Bernard S, Schondelmaier J, Weyen J, Quarrie SA (2007) The genetics of nitrogen use in hexaploid wheat: N utilisation development and yield. Theor Appl Genet 114:403–419

    PubMed  CAS  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O, Lainé AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    PubMed  CAS  Google Scholar 

  • Hao Z, Li X, Liu X, Xie C, Li M, Zhang D, Zhang S (2009) Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica 174:165–177

    Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R et al (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    PubMed  CAS  Google Scholar 

  • Hayes PM, Blake T, Chen THH, Tragoonrung S, Chen F, Pan A, Liu B (1993) Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winterhardiness. Genome 36:66–71

    PubMed  CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    CAS  Google Scholar 

  • Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol 147:355–366

    PubMed  CAS  Google Scholar 

  • Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    PubMed  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    PubMed  CAS  Google Scholar 

  • Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA 97:4392–4397

    PubMed  CAS  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    PubMed  CAS  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    CAS  Google Scholar 

  • Hu Q, Weiss A, Feng S, Baezinger PS (2005) Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agric For Meteorol 135:284–290

    Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727

    PubMed  CAS  Google Scholar 

  • Iftekharuddaula KM, Newaz MA, Salam MA, Ahmed HU, Mahbub MAA, Septiningsih EM, Collard BCY, Sanchez DL, Pamplona AM, Mackill DJ (2010) Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into BR11, the rainfed lowland rice mega variety of Bangladesh. Euphytica 178:83–97

    Google Scholar 

  • IPCC (2007) Forth assessment report: synthesis. Published online 17 Nov. http://www.ipcc.ch/publications_and_data/ar4/syr/en/main.html. Accessed May 2012

  • Iqbal M, Navabi A, Yang RC, Salmon DF, Spaner D (2007) Molecular characterization of vernalization response genes in Canadian spring wheat. Genome 50:511–516

    PubMed  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    PubMed  CAS  Google Scholar 

  • Iwaki K, Nishida J, Yanagisawa T, Yoshida H, Kato K (2002) Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:571–576

    PubMed  CAS  Google Scholar 

  • Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58:3091–3097

    PubMed  CAS  Google Scholar 

  • Jagadish SVK, Craufurd PQ, Wheeler TR (2007) High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot 58:1627–1635

    PubMed  CAS  Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennet J, Craufurd PQ (2010) Physiological and proteomic approaches to affress heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61:143–156

    PubMed  CAS  Google Scholar 

  • James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547

    PubMed  CAS  Google Scholar 

  • Jiang GH, He YQ, Xu CG, Li XH, Zhang Q (2004) The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet 108:688–698

    PubMed  CAS  Google Scholar 

  • Jordan DR, Mace ES, Henzell RG, Klein PE, Klein RR (2010) Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 120:1279–1287

    PubMed  CAS  Google Scholar 

  • Kamoshita A, Babu RC, Boopathi NM, Fukai S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res 109:1–23

    Google Scholar 

  • Karsai I, Szücs P, Meszaros K, Filichkina T, Hayes PM, Skinner JS, Lang L, Bedo Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466

    PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    PubMed  CAS  Google Scholar 

  • Khowaja FS, Norton GJ, Courtois B, Price AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10:276. doi:10.1186/1471-2164-10-276

    PubMed  Google Scholar 

  • Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H (2009) Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiol 149:1341–1353

    PubMed  CAS  Google Scholar 

  • Kim D-H, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299

    PubMed  CAS  Google Scholar 

  • Knox AK, Li C, Vagujfalvi A, Galiba G, Stockinger EJ, Dubcovsky J (2008) Identification of candidate CBF genes for the frost tolerance locus Fr-Am2 in Triticum monococcum. Plant Mol Biol 67:257–270

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    PubMed  CAS  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    PubMed  CAS  Google Scholar 

  • Koyama LM, Levesley A, Koebner RMD, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    PubMed  CAS  Google Scholar 

  • Kumar U, Joshi AK, Kumari M, Paliwal R, Kumar S, Roder MS (2010) Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3’ × ‘Sonalika’ population. Euphytica 174:437–445

    Google Scholar 

  • Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    PubMed  CAS  Google Scholar 

  • Laperche A, Brancourt-Hulmer M, Heumez E, Gardet O, Hanocq E, Devienne-Barret F, Le Gouis J (2007) Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theor Appl Genet 115:399–415

    PubMed  CAS  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    PubMed  CAS  Google Scholar 

  • Lauchli A, Grattan CR (2005) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, New York, pp 1–32

    Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter · spring barley Hordeum vulgare (L.) cross. Genome 38:575–585

    PubMed  CAS  Google Scholar 

  • Le Gouis J, Béghin D, Heumez E, Pluchard P (2008) Genetic differences for nitrogen uptake and nitrogen utilization efficiencies in winter wheat. Eur J Agron 12:163–173

    Google Scholar 

  • Li C, Dubcovsky J (2008) Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J 55:543–554

    PubMed  CAS  Google Scholar 

  • Li S, Jia J, Wei X, Zhang X, Li L et al (2007) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–178

    Google Scholar 

  • Limin AE, Fowler DB (2002) Developmental traits affecting low-temperature tolerance response in near-isogenic lines for the vernalization locus Vrn-A1 in wheat (Triticum aestivum L. em Thell). Ann Bot 89:579–585

    PubMed  CAS  Google Scholar 

  • Limin AE, Fowler DB (2006) Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development. Planta 224:360–366

    PubMed  CAS  Google Scholar 

  • Lin SY, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet 96:997–1003

    CAS  Google Scholar 

  • Lin HX, Yamamoto T, Sasaki T, Yano M (2000) Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet 101:1021–1028

    CAS  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of shoot and root controlling rice salt tolerance. Theor Appl Genet 108:253–260

    PubMed  CAS  Google Scholar 

  • Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F (2003) Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol 131:345–358

    PubMed  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S et al (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    PubMed  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    PubMed  CAS  Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263–272

    Google Scholar 

  • Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870

    PubMed  CAS  Google Scholar 

  • Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperatures during the flowering period among japonica–rice varieties. Plant Prod Sci 4:90–93

    Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li HH et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    PubMed  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value Using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Mickelson S, See D, Meyer FD, Garner JP, Foster CR, Blake TK, Fischer AM (2003) Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. J Exp Bot 54:801–812

    PubMed  CAS  Google Scholar 

  • Miller AK, Galiba G, Dubcovsky (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am2 in Triticum monococcum. Mol Genet Genomics 275:193–203

    Google Scholar 

  • Mitchell-Olds T (2010) Complex-trait analysis in plants. Genome Biol 11:113

    PubMed  Google Scholar 

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497–523

    PubMed  CAS  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanism of salinity tolerance. Annu Rev Plant Biol 59:651–681

    PubMed  CAS  Google Scholar 

  • Munns R, James RA, Xu B et al (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    PubMed  CAS  Google Scholar 

  • Nakagawa H, Yamagishi J, Miyamoto N, Motoyama M, Yano M, Nemoto K (2005) Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor Appl Genet 110:778–786

    PubMed  CAS  Google Scholar 

  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A et al (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    PubMed  CAS  Google Scholar 

  • Neue HU, Lantin RS (1994) Micronutrient toxicities and deficiencies in rice. In: Yeo AR, Flowers TJ (eds) Soil mineral stresses: approaches to crop improvement. Springer, Berlin, pp 175–200

    Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    PubMed  CAS  Google Scholar 

  • Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M et al (2001) Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J Exp Bot 52:1209–1217

    PubMed  CAS  Google Scholar 

  • Obara M, Sato T, Sasaki S et al (2004) Identification and characterization of QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice (Oryza sativa L.). Theor Appl Genet 110:1–11

    PubMed  CAS  Google Scholar 

  • Onouchi H, Igeno MI, Perilleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12:885–900

    PubMed  CAS  Google Scholar 

  • Paliwal R, Röder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125:561–575

    PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    PubMed  CAS  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    PubMed  CAS  Google Scholar 

  • Pinkerton A, Simpson JR (1986) Interactions of surface drying and subsurface nutrients affecting plant-growth on acidic soil profiles from an old pasture. Aust J Exp Agric 26:681–689

    CAS  Google Scholar 

  • Pitman MG, Lauchli A (2002) Global impact of salinity and agricultural ecosystems. In: Lauchli A, Ulrich L (eds) Salinity: environment - plant - molecules. Springer, New York, NY, pp 3–20

    Google Scholar 

  • Prasad SR, Bagli PG, Hittalmani S, Shashidhar HE (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance of salt stress in rice (Oryza sativa L.). Curr Sci 78:162–164

    CAS  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr, Sheehy JE, Thomas JMG (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res 95:398–411

    Google Scholar 

  • Promkhambut A, Younger A, Polthanee A, Akkasaeng C (2010) Morphological and physiological responses of sorghum (Sorghum bicolor L. Moench) to waterlogging. Asian J Plant Sci 9:183–193

    Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    PubMed  CAS  Google Scholar 

  • Quesada V, Garcia-Martinez S, Piqueras P, Ponce MR, Micol JL (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol 130:951–963

    PubMed  CAS  Google Scholar 

  • Quijano-Guerta C, Kirk GJD, Portugal AM, Bartolome VI, McLaren GC (2002) Tolerance of rice germplasm to zinc deficiency. Field Crops Res 76:123–130

    Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transport. Nat Genet 37:1141–1146

    PubMed  CAS  Google Scholar 

  • Ren Z, Zhen Z, Chinnusamy V, Zhu J, Cui X, Iida K, Zhu JK (2010) RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis. Proc Natl Acad Sci USA 107:5669–5674

    PubMed  CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    PubMed  CAS  Google Scholar 

  • Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29:115–125

    PubMed  CAS  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Google Scholar 

  • Roberts DWA (1986) Chromosomes in cadet and rescue wheats carrying loci for cold hardiness and vernalization response. Can J Genet Cytol 28:991–997

    Google Scholar 

  • Rus A, Baxter I, Muthukumar B, Gustin J, Lahner B, Yakubova E, Salt DE (2006) Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genet 2:e210. doi:10.1371/journal.pgen.0020210

    PubMed  Google Scholar 

  • Saha MC, Cooper JD, Mian MAR, Chekhovskiy K, May GD (2006) Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor Appl Genet 113:1449–1458

    PubMed  CAS  Google Scholar 

  • Saisho D, Ishii M, Hori K, Sato K (2011) Natural variation of barley vernalization requirements: implication of quantitative variation of winter growth habit as an adaptive trait in East Asia. Plant Cell Physiol 52:775–784

    PubMed  CAS  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381

    PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    PubMed  CAS  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Bol 48:713–726

    CAS  Google Scholar 

  • Sarkar RK, Panda D, Reddy JN, Patnaik SSC, Mackill DJ, Ismail AM (2009) Performance of submergence tolerant rice genotypes carrying the Sub1 QTL under stressed and non-stressed natural field conditions. Indian J Agric Sci 79:876–883

    Google Scholar 

  • Schneeberger K, Ossowskia S, Ott F, Klein JD, Wang X et al (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci USA 108:10249–10254

    PubMed  CAS  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    PubMed  CAS  Google Scholar 

  • Septiningsih EM, Sanchez DL, Singh N, Sendon PM, Pamplona AM, Heuer S, Mackill DJ (2012) Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theor Appl Genet 124:867–874

    PubMed  Google Scholar 

  • Setter TL, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1–34

    CAS  Google Scholar 

  • Sharma PN, Chatterjee C, Sharma CP, Agarwala SC (1987) Zinc deficiency and anther development in maize. Plant Cell Physiol 28:11–18

    CAS  Google Scholar 

  • Shi H, Lee B, Wu SJ, Zhu JK (2002) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis. Nat Biotechnol 21:81–85

    PubMed  Google Scholar 

  • Shimizu A, Yanagihara S, Kawasaki S, Ikehashi H (2004) Phosphorus deficiency-induced root elongation and its QTL in rice (Oryza sativa L.). Theor Appl Genet 109:1361–1368

    PubMed  CAS  Google Scholar 

  • Shimizu A, Kato K, Komatsu A, Motomura K, Ikehashi H (2008) Genetic analysis of root elongation induced by phosphorus deficiency in rice (Oryza sativa L.): fine QTL mapping and multivariate analysis of related traits. Theor Appl Genet 117:987–996

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A (2003) Thai jasmine rice carrying QTLch9 carrying QTLch9 (SubQTL) is submergence tolerant. Ann Bot 91:255–261

    PubMed  CAS  Google Scholar 

  • Skinner JS, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551

    PubMed  CAS  Google Scholar 

  • Smika DE, Haas HJ, Power JF (1965) Effects of moisture and nitrogen fertilizer on growth and water use by native grass. Agron J 57:483–486

    Google Scholar 

  • Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221

    PubMed  CAS  Google Scholar 

  • Steele KA, Virk DS, Kumar R, Prasad SC, Witcombe JR (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crops Res 101:180–186

    Google Scholar 

  • Stelmakh AF (1987) Growth habit in common wheat (Triticum aestivum L. em. Thell.). Euphytica 36:513–519

    Google Scholar 

  • Stelmakh AF (1992) Genetic effect of Vrn genes on heading date and agronomic traits in bread wheat. Euphytica 65:53–60

    Google Scholar 

  • Stelmakh AF (1998) Genetic systems regulating flowering response in wheat. Euphytica 100:359–369

    Google Scholar 

  • Stockinger EJ, Skinner JS, Gardner KG, Francia E, Pecchioni N (2007) Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J 51:308–321

    PubMed  CAS  Google Scholar 

  • Su J, Xiao Y, Li M, Liu Q, Li B, Tong Y, Jia J, Li Z (2006) Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant Soil 281:25–36

    CAS  Google Scholar 

  • Sugano S, Andronis C, Green RM, Wang ZY, Tobin EM (1998) Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc Natl Acad Sci USA 95:11020–11025

    PubMed  CAS  Google Scholar 

  • Suge H (1987) Physiological genetics of internode elongation under submergence in floating rice. Jpn J Genet 62:69–80

    Google Scholar 

  • Sunarpi, Horie T, Motoda J, Kubo M, Yang H et al (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    PubMed  CAS  Google Scholar 

  • Sutka J (1981) Genetic studies of frost resistance in wheat. Theor Appl Genet 59:145–152

    Google Scholar 

  • Sutka J, Snape JW (1989) Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42:41–44

    Google Scholar 

  • Swamy BPM, Vikram P, Dixit S, Ahmed HU, Kumar A (2011) Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics 12:319

    PubMed  Google Scholar 

  • Szücs P, Skinner JS, Karsai I, Cuesta-Marcos A, Haggard KG, Corey AE, Chen TH, Hayes PM (2007) Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Mol Genet Genomics 277:249–261

    PubMed  Google Scholar 

  • Takahashi R, Yasuda S (1971) Genetics of earliness and growth habit in barley. In: Nilan RA (ed) Barley genetics II (Proceedings of the second international barley genetics symposium). Washington State University Press, Pullman, WA, pp 388–408

    Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Teshima MK, Yokoi S, Innan H, Shimamoto K (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci USA 106:4555–4560

    PubMed  CAS  Google Scholar 

  • Tamura K, Yamada T (2007) A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between Poaceae species. Theor Appl Genet 114:273–283

    PubMed  CAS  Google Scholar 

  • Thomson MJ, De Ocampo M, Egdane J (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Google Scholar 

  • Trachsel S, Messmer R, Stamp P, Hund A (2009) Mapping of QTLs for lateral and axile root growth of tropical maize. Theor Appl Genet 119:1413–1424

    PubMed  CAS  Google Scholar 

  • Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA 100:13099–13100

    PubMed  CAS  Google Scholar 

  • Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357

    PubMed  CAS  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712

    PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    PubMed  CAS  Google Scholar 

  • Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 62:2485–2494

    PubMed  CAS  Google Scholar 

  • Vagujfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost- tolerance locus Fr-A2 on wheat chromosome 5A. Mol Genet Genomics 269:60–67

    PubMed  CAS  Google Scholar 

  • Vagujfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G, Galiba G, Cattiveli L (2005) The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Genet Genomics 274:506–514

    PubMed  CAS  Google Scholar 

  • Venuprasad R, Bool ME, Quiatchon L, Atlin GN (2012) A QTL for rice grain yield in aerobic environments with large effects in three genetic backgrounds. Theor Appl Genet 124:323–332

    PubMed  CAS  Google Scholar 

  • Veyrieras JB, Goffinet B, Charcosset A (2007) Meta QTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:49

    PubMed  Google Scholar 

  • Vikram P, Swamy BP, Dixit S, Ahmed HU, Teresa Sta Cruz M, Singh AK, Kumar A (2011) qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genetics 12:89

    Google Scholar 

  • Von Zitzewitz J, Szücs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, Casas A, Chen TH, Hayes PM, Skinner JS (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467

    CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wang ML, Barkley NA, Yu JK, Dean RE, Newman ML, Sorrells ME, Pederson GA (2005) Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genet Res 3:45–57

    CAS  Google Scholar 

  • Wang G, Schmalenbach I, von Korff M, Leon J, Kilian B, Rode J, Pillen K (2010) Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Theor Appl Genet 120:1559–1574

    PubMed  Google Scholar 

  • Wilhelm EP, Turner AS, Laurie DA (2009) Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet 118:285–294

    PubMed  CAS  Google Scholar 

  • Wissuwa M, Ae N (2001) Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant Soil 237:275–286

    CAS  Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897

    PubMed  CAS  Google Scholar 

  • Wissuwa M, Gamat G, Ismail AM (2005) Is root growth under phosphorus deficiency affected by source or sink limitations? J Exp Bot 56:1943–1950

    PubMed  CAS  Google Scholar 

  • Wissuwa M, Ismail AM, Yanagihara S (2006) Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol 142:731–741

    PubMed  CAS  Google Scholar 

  • Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Google Scholar 

  • Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219–224

    CAS  Google Scholar 

  • Xu H, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    PubMed  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T et al (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    PubMed  CAS  Google Scholar 

  • Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–383

    PubMed  CAS  Google Scholar 

  • Xue WY, Xing YZ, Weng XY et al (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    PubMed  CAS  Google Scholar 

  • Yamada T, Jones ES, Nomura T, Hisano H, Shimamoto Y, Smith KF, Hayward MD, Forster JW (2004) QTL analysis of morphological, developmental and winter hardiness-associated traits in perennial ryegrass (Lolium perenne L.). Crop Sci 44:925–935

    CAS  Google Scholar 

  • Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M (1998) Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet 97:37–44

    CAS  Google Scholar 

  • Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T (2002) Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot 53:917–925

    PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    PubMed  CAS  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004a) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004b) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    PubMed  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    PubMed  CAS  Google Scholar 

  • Yang FP, Zhang XK, Xia XC, Laurie DA, Yang WX, He ZH (2009) Distribution of the photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars. Euphytica 165:445–452

    CAS  Google Scholar 

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95:1025–1032

    CAS  Google Scholar 

  • Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127:1425–1429

    PubMed  CAS  Google Scholar 

  • Ye C, Argayoso MA, Redona ED, Sierra SN, Laza MA et al (2012) Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed 131:33–41

    CAS  Google Scholar 

  • Zaidi PH, Rafique S, Singh NN (2003) Response of maize (Zea mays L.) genotypes to excess soil moisture stress: morpho-physiological effects and basis of tolerance. Eur J Agron 19:383–399

    Google Scholar 

  • Zhang JS, Xie C, Li ZY, Chen SY (1999) Expression of the plasma membrane H+-ATPase gene in response to salt stress in a rice salt-tolerant mutant and its original variety. Theor Appl Genet 99:1006–1011

    CAS  Google Scholar 

  • Zhang X, Zhou S, Fu Y, Su Z, Wang X, Sun C (2006) Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol Biol 62:247–259

    PubMed  CAS  Google Scholar 

  • Zhao H, Yu J, You FM, Luo M, Peng J (2011) Transferability of microsatellite markers from Brachypodium distachyon to Miscanthus sinensis, a potential biomass crop. J Integr Plant Biol 53:232–245

    PubMed  CAS  Google Scholar 

  • Zheng HJ, Wu AZ, Zheng CC, Wang YF, Cai R, Shen XF, Xu RR, Liu P, Kong LJ, Dong ST (2009) QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breed 128:54–62

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dwiyanti, M.S., Yamada, T. (2013). Molecular Mapping and Breeding for Genes/QTLS Related to Climate Change. In: Kole, C. (eds) Genomics and Breeding for Climate-Resilient Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37045-8_4

Download citation

Publish with us

Policies and ethics