Switching DSM Control of Perishable Inventory Systems with Delayed Shipments and Uncertain Demand

  • Przemyslaw Ignaciuk
  • Andrzej Bartoszewicz
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 440)


In this chapter, the concept of discrete sliding modes (DSMs) is applied to design an efficient supply policy for a class of perturbed processes with delay – goods flow control in supply chain. In the considered systems, the stock used to satisfy the unknown, time-varying demand placed at a goods distribution center; is replenished with delay from a remote supply source. The order quantity is fixed, leaving the time between the consecutive orders as a decision variable, which perfectly suits the switching nature of input signals obtained in DSM control systems. It is shown that under the proposed nonlinear policy, the stock level does not exceed the assigned storage space. Moreover, it is also demonstrated that the stock is never entirely depleted, which guarantees full demand satisfaction and maximum service level.


Inventory System Slide Mode Control Order Quantity Switching Function Stock Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandyopadhyay, B., Janardhanan, S.: Discrete-time sliding mode control: a multirate output feedback approach. LNCIS, vol. 323. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Bandyopadhyay, B., Fulwani, D., Kim, K.S.: Sliding mode control using novel sliding surfaces. LNCIS, vol. 392. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Bartoszewicz, A.: Discrete time quasi-sliding mode control strategies. IEEE Trans. Ind. Electron 45, 633–637 (1998)CrossRefGoogle Scholar
  4. 4.
    Bartoszewicz, A., Nowacka-Leverton, A.: Time-varying sliding modes for second and third order systems. LNCIS, vol. 382. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  5. 5.
    Gao, W., Wang, Y., Homaifa, A.: Discrete-time variable structure control systems. IEEE Trans. Ind. Electron 42, 117–122 (1995)CrossRefGoogle Scholar
  6. 6.
    Goyal, S.K., Giri, B.C.: Recent trends in modeling of deteriorating inventory. Eur. J. Oper. Res. 134, 1–16 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ignaciuk, P., Bartoszewicz, A.: LQ optimal sliding mode supply policy for periodic review inventory systems. IEEE Trans. Autom. Control 55, 269–274 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ignaciuk, P., Bartoszewicz, A.: Linear-quadratic optimal control strategy for periodic-review inventory systems. Automatica 46, 1982–1993 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ignaciuk, P., Bartoszewicz, A.: LQ optimal and reaching law based sliding modes for inventory management systems. Int. J. Syst. Sci. 43, 105–116 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ignaciuk, P., Bartoszewicz, A.: LQ optimal sliding-mode supply policy for periodic-review perishable inventory systems. J. Frank Inst. 349, 1561–1582 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ignaciuk, P., Bartoszewicz, A.: Sliding mode dead-beat control of perishable inventory systems with multiple suppliers. IEEE Trans. Autom. Sci. Eng. 9, 418–423 (2012)CrossRefGoogle Scholar
  12. 12.
    Ignaciuk, P., Bartoszewicz, A.: Linear-quadratic optimal control of periodic-review perishable inventory systems. IEEE Trans. Control Syst. Technol. 20, 1400–1407 (2012)CrossRefGoogle Scholar
  13. 13.
    Karaesmen, I., Scheller-Wolf, A., Deniz, B.: Managing perishable and aging inventories: review and future research directions,”. In: Kempf, K., Keskinocak, P., Uzsoy, R. (eds.) Handbook of Production Planning. Kluwer, Dordrecht (2008)Google Scholar
  14. 14.
    Milosavljević, Č.: General conditions for the existence of a quasisliding mode on the switching hyperplane in discrete variable structure systems. Autom. Rem. Control 46, 307–314 (1985)zbMATHGoogle Scholar
  15. 15.
    Milosavljević, Č., Peruničić-Draženovic, B., Veselić, B., Mitić, D.: Sampled data quasi-sliding mode control strategies. In: Proc. IEEE Int. Conf. Ind. Technol., pp. 2640–2645 (2006)Google Scholar
  16. 16.
    Nahmias, S.: Perishable inventory theory: a review. Oper. Res. 30, 680–708 (1982)zbMATHCrossRefGoogle Scholar
  17. 17.
    Ortega, M., Lin, L.: Control theory applications to the production-inventory problem: a review. Int. J. Prod. Res. 42, 2303–2322 (2004)zbMATHCrossRefGoogle Scholar
  18. 18.
    Rafaat, F.: Survey of literature on continuously deteriorating inventory models. J. Oper. Res. Soc. 42, 27–37 (1991)Google Scholar
  19. 19.
    Sarimveis, H., Patrinos, P., Tarantilis, C.D., Kiranoudis, C.T.: Dynamic modeling and control of supply chain systems: a review. Computers Oper. Res. 35, 3530–3561 (2008)zbMATHCrossRefGoogle Scholar
  20. 20.
    Sethi, S.P., Zhang, Q.: Optimal control applications to management sciences. Special issue: Automatica 42, 1241–1428 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Silver, E.A., Pyke, D.F., Peterson, R.: Inventory management and production planning and scheduling. John Wiley, Chichester (1998)Google Scholar
  22. 22.
    Utkin, V.I.: Sliding modes in control and optimization. Springer, Berlin (1992)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Information TechnologyLodz University of TechnologyŁódźPoland
  2. 2.Institute of Automatic ControlLodz University of TechnologyŁódźPoland

Personalised recommendations