Sliding Mode Control in Heavy Vehicle Safety

  • H. ImineEmail author
  • L. Fridman
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 440)


In this chapter, an original approach to heavy vehicles rollover risk prediction is presented and validated experimentally. It is based on the calculation of the LTR (Load Transfer Ratio) which depends on the estimated vertical forces using high order sliding mode observers. Previously, a tractor model is developed. The validation tests were carried out on an instrumented truck rolling on the road at various speeds and lane-change manoeuvres. Many scenarios have been experienced: driving straight, curved trajectories, zigzag manoeuvre and brake tests to emphasize the rollover phenomenon and its prediction to set off an alarm for the driver. In this study, the vehicle dynamic parameters (masses, inertias, stiffness..) and the static forces infrastructure characteristics (road profile, radius of curvature, longitudinal and lateral slope, skid resistance) are measured or calculated before the tests.


Heavy vehicle modeling Rollover Sliding mode observer Estimation Prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann, J., Odenthal, D.: Damping of vehicle roll dynamics by speed-scheduled active steering. In: European Control Conference, Karlsruhe, Germany (1999)Google Scholar
  2. 2.
    Ahrens, J.H., Khalil, H.K.: High-gain observers in the presence of measurement noise: A switched-gain approach. Automatica 45(4), 936–943 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cebon, D.: Interaction between heavy vehicles and roads. In: Society of Automotive Engineers, USA, pp. SP–931, 81 (1993)Google Scholar
  4. 4.
    Chen, B.C., Peng, H.: A real-time rollover threat index for sports utiliy vehicles. In: American Control Conference, San Diego, USA, pp. 1233–1237 (1999)Google Scholar
  5. 5.
    Chen, B.C., Peng, H.: Rollover warning of articulated vehicles based on a time-to-rollover metric. In: Proc. ASME Int. Congress and Exploitation (1999)Google Scholar
  6. 6.
    Chen, C., Tomizuka, M.: Dynamic modeling of articulated vehicles for automated highway systems. In: American Control Conference, pp. 653–657 (1995)Google Scholar
  7. 7.
    Dakhlallah, J., Imine, H., Sellami, Y., Bellot, D.: Heavy vehicle state estimation and rollover risk evaluation using kalman filter and sliding mode observer. In: IEEE European Control Conference, ECC 2007, Kos, Grece, pp. 3444–3449 (2007)Google Scholar
  8. 8.
    Davila, A., Moreno, J., Fridman, L.: Variable gains super-twisting algorithm: A lyapunov based design. In: IEEE American Control Conference (2011)Google Scholar
  9. 9.
    Davila, J., Fridman, L., Levant, A.: High-order sliding observation and fault detection. In: 16th Mediterranean Conference on Control and Automation, Ajaccio, Corsica, France, pp. 1699–1704 (2008)Google Scholar
  10. 10.
    Davila, J., Fridman, L., Poznyak, A.: Observation and identification of mechanical systems via second order sliding modes. In: 2006 International Workshop on Variable Structure Systems, VSS 2006, Sardinia, Italy, pp. 232–237 (2006)Google Scholar
  11. 11.
    Davila, J., Fridman, L., Poznyak, A.: Observation and identification of mechanical systems via second order sliding modes. International Journal of Control 79(10), 1251–1262 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Emelyanov, S.V., Korovin, S.K., Levantovsky, L.V.: Second order sliding modes in controlling uncertain systems. Soviet Journal of Computer and System Science, 63–68 (1986)Google Scholar
  13. 13.
    Evans, J., Batzer, S., Andrews, S.: Evaluation of heavy truck rollover accidents. In: 19th International Safety Conference on the Enhanced Safety of Vehicles, Washington DC, USA, pp. 05–0140–W (2005)Google Scholar
  14. 14.
    Floret-Pontet, F., Lamnabhi-Lagarrigue, F.: Parameter identification methodology using sliding mode observers. Int. Journal of Control 74(18), 1743–1753 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Fridman, L.: The Problem of Chattering: An Averaging Approach. In: Young, K., Ozguner, U. (eds.) Variable Structure, Sliding Mode and Nonlinear Control. LNCIS, vol. 247, pp. 363–386. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Fridman, L., Levant, A., Davila, J.: High-order sliding-mode observation and identification for linear systems with unknown inputs. In: Proc. 45th IEEE Conf. Decision Control, San Diego, CA, USA, pp. 5567–5572 (2006)Google Scholar
  17. 17.
    Fridman, L., Shtessel, Y., Edwards, C., Yan, X.: Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust Nonlinear Control 18(4-5), 399–413 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gaspar, P., Szaszi, I., Bokor, J.: Reconfigurable control structure to prevent the rollover of heavy vehicles. Control Engineering Practice (13), 699–711 (2005)CrossRefGoogle Scholar
  19. 19.
    Gillespie, T.D., Karamihas, S.M.: Characterising trucks for dynamic load prediction. Int. J. Vehicle Design 1(1), 3–19 (1993)Google Scholar
  20. 20.
    Ibrahim, I.M.: Design of reducing the generated dynamic tyre loads of the articulated tanker vehicles. Int. J. of Vehicle Design Heavy Vehicle Systems 11(1), 86–99 (2004)CrossRefGoogle Scholar
  21. 21.
    Imine, H.: Identification of heavy vehicle parameters and steering control for rollover avoidance. In: IAVSD, International Symposium on Dynamics of Vehicles on Roads and Tracks, Manchester, UK (2011)Google Scholar
  22. 22.
    Imine, H., Dolcemascolo, V.: Influence of the road profile on wheel and vehicle loads estimation. In: 9th International Symposium on Heavy Vehicle Weights and Dimensions, Pennsylvania, USA (2006)Google Scholar
  23. 23.
    Imine, H., Dolcemascolo, V.: Vertical tyre forces estimation to calculate the rollover risk of heavy vehicles. In: FISITA 2006, World Automotive Congress, Yokohama, Japan, Yokohama, Japan, p. F2006V078 (2006)Google Scholar
  24. 24.
    Imine, H., Dolcemascolo, V.: Warning system to prevent rollover of heavy vehicles. In: 9th International Symposium on Heavy Vehicle Weights and Dimensions. Pennsylvania, USA (2006)Google Scholar
  25. 25.
    Imine, H., Dolcemascolo, V.: Rollover risk prediction of heavy vehicle in interaction with infrastructure. IJHVS, International Journal of Heavy Vehicle Systems 14(3), 294–307 (2007)CrossRefGoogle Scholar
  26. 26.
    Imine, H., Dolcemascolo, V.: Sliding mode observers to heavy vehicle vertical forces estimation. IJHVS, International Journal of Heavy Vehicle Systems 15(1), 53–64 (2008)CrossRefGoogle Scholar
  27. 27.
    Imine, H., Fridman, L., Shraim, H.: Identification of heavy vehicle suspension parameters and estimation of vertical forces. In: VSS 2012, International Workshop on Variable Structure Systems, Bombay, India, pp. 63–69 (2012)Google Scholar
  28. 28.
    Imine, H., Fridman, L., Sraim, H., Djemai, M.: Sliding Mode Based Analysis and Identification of Vehicle Dynamics. LNCIS, vol. 414. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Imine, H., Khemoudj, O.: Dynamic parameters identification and estimation of the vertical forces of heavy vehicle. In: SAE 2011 World Congress on Automotive, Detroit, USA (2011)Google Scholar
  30. 30.
    Imine, H., Madani, T., Srairi, S.: High order sliding mode observers to estimate vertical forces: experimental results. In: ITSC, IEEE Intelligent Transportation Systems Society, Beijing, China, pp. 523–527 (2008)Google Scholar
  31. 31.
    Johansson, B., Gafvert, M.: Untripped suv rollover detection and prevention. In: 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, pp. 5461–5466 (2004)Google Scholar
  32. 32.
    Khemoudj, O., Imine, H., Djema, M.: Robust observation of tractor-trailer vertical forces using inverse model and exact differentiator. SAE, International Journal of Materials and Manufacturing 3(1), 278–289 (2010)Google Scholar
  33. 33.
    Khemoudj, O., Imine, H., Djemai, M., Fridman, L.: Variable gain sliding mode observer for heavy duty vehicle tyre forces estimation. In: 11th International Workshop on Variable Structure Systems, VSS 2010, pp. 522–527. Mexico city, Mexico (2010)CrossRefGoogle Scholar
  34. 34.
    Legeay, V., Daburon, P., Gourraud, C.: Comparaison de mesures de l’uni par l’analyseur de profil en long et par compensation dynamique. Bulletin interne, Laboratoire Central des Ponts et Chaussées, DGER/IRVAR (1996)Google Scholar
  35. 35.
    Levant, A.: Sliding order and sliding accuracy in sliding mode control. International Journal of Control 58, 1247–1263 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Levant, A.: High-order sliding modes: differentiation and output-feedback control. International Journal of Control 76(9-10), 924–941 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Moreno, J.: Lyapunov Approach for Analysis and Design of Second Order Sliding Mode Algorithms, ch. 4, pp. 122–150. Springer (2011)Google Scholar
  39. 39.
    ONISR: La sécurité routiére en france. bilan de l’année 2004. La documentation française, sécurité routiére, Observatoire National Interministériel de sécurité routiére (2005)Google Scholar
  40. 40.
    Soderstrom, T., Stoica, P.: System Identification. Prentice Hall International, Cambridge (1989)Google Scholar
  41. 41.
    Tianjun, Z., Zong, C., Zheng, H., Tian, C., Zheng, H.: Yaw/roll stability modeling analyses and control of heavy tractor-semitrailer. In: SAE Intl. Asia Pacific Automotive Eng. Conf. (2007)Google Scholar
  42. 42.
    Utkin, V.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)zbMATHCrossRefGoogle Scholar
  43. 43.
    Vasiljevic, L.K., Khalil, H.K.: Error bounds in differentiation of noisy signals by high-gain observers. Systems and Control Letters 57, 856–862 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.LEPSIS-IFSTTAR, Laboratory for road operation, perception,simulators and simulationsThe French institute of science and technology for transport, development and networksParisFrance
  2. 2.Departamento de Ingeniería, de Control y Robótica División de Ingeniería Eléctrica, Facultad de Ingeniería UNAMUNAMMexico CityMexico

Personalised recommendations