Advertisement

Quantization Behaviors in Equivalent-Control Based Sliding-Mode Control Systems

  • Yan Yan
  • Xinghuo Yu
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 440)

Abstract

In this chapter, we study the quantization behaviors of the equivalent control based second order single-input sliding-mode control (SMC) systems in the presence of quantized state feedback.We show that the class of SMC systems with both uniform and logarithmic quantizers can make the system states converge into a band, which relates to the quantization parameters. Properties of the system trajectories with quantized state feedback are characterized by using the concepts of quantized sliding mode (QSM) and quantized sliding-mode control (QSMC) system. We show that the QSM is piecewise constant. Various simulations illustrate the behaviors of the equivalent-control based SMC system under uniform and logarithmic quantized state feedback.

Keywords

Quantization Error Equivalent Control Quantization Behavior Uniform Quantizer Variable Structure System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chakrabarty, S., Bandyopadhyay, B.: Quasi sliding mode control with quantization in state measurement. In: Proceedings of 37th Annual Conference on IEEE Industrial Electronics Society, Australia, pp. 3971–3976 (2011)Google Scholar
  2. 2.
    Corradini, M., Ippoliti, G., Orlando, G., et al.: Robust control of hybrid plants in the presence of quantization errors. In: Proceedings of IEEE International Conference on Control and Automation, New Zealand, pp. 234–239 (2009)Google Scholar
  3. 3.
    Delchamps, D.F.: Stabilizing a linear system with quantized state feedback. IEEE Transactions on Automatic Control 35(8), 916–924 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Edwards, C., Spurgeon, S.K.: Sliding mode control, theory and applications. CRC Press, Taylor & Francis Group (1998)Google Scholar
  5. 5.
    Elia, N., Mitter, S.K.: Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control 4, 1384–1400 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Furuta, K., Pan, Y.: Discrete-time VSS control for continuous-time systems. In: Proceedings of the First Asian Control Conference, Tolyo, Japan, pp. 337–380 (1994)Google Scholar
  7. 7.
    Galias, Z., Yu, X.: Analysis of zero-order holder discretization of two dimensional sliding-mode control systems. IEEE Transactions on Circuits and Systems-II: Express Briefs 55(12), 1269–1273 (2008)CrossRefGoogle Scholar
  8. 8.
    Gao, W., Wang, Y., Homaifa, A.: Discrete-time variable structure control systems. IEEE Transactions on Industrial Electronics 42(2), 117–122 (1995)CrossRefGoogle Scholar
  9. 9.
    Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Transactions on Industrial Electronics 40(1), 2–22 (1993)CrossRefGoogle Scholar
  10. 10.
    Levant, A.: Sliding order and sliding accuracy in sliding mode control. International Journal of Control 58(6), 1247–1263 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals. Automatica 39, 1543–1554 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Liu, T., Jiang, Z., Hill, D.J.: Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization. IEEE Transactions on Automatic Control 57(5), 1326–1332 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Milosavljevic, C.: General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems. Automation and Remote Control 3, 36–44 (1985)Google Scholar
  14. 14.
    Rasool, F., Nguang, S.K.: Quantised robutst H  ∞  output feedback control of discrete-time systems with random communication delays. Control Theory and Applications 4, 2252–2262 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shkolnikov, I.A., Shtessel, Y.B., Adhami, R.: Digital sliding modes and quasi-exact tracking discrete-valued signals. In: Proceedings of IEEE 9th International Workshop on Variable Structure Systems, Italy, pp. 17–22 (2006)Google Scholar
  16. 16.
    Su, W.C., Drakunov, S., Özgüner, Ü.: An \(\textit{O}\)(T 2) boundary layer in sliding mode for sampled-data systems. IEEE Transactions on Automatic Control 45, 482–485 (2000)zbMATHCrossRefGoogle Scholar
  17. 17.
    Utkin, V.I.: Variable structure systems with sliding mode. IEEE Transactions on Automatic Control 22(2), 212–222 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Utkin, V.I., Drakunov, S.: On discrete-time sliding mode control. In: Proceedings of IFAC Symposium on Nonlinear Control Systems, Capri, Italy, pp. 384–389 (1989)Google Scholar
  19. 19.
    Wang, B., Yu, X., Chen, G.: ZOH discretization effect on single-input sliding mode control systems with matched uncertainties. Automatica 45, 119–125 (2009)MathSciNetGoogle Scholar
  20. 20.
    Xia, X., Zinober, A.S.I.: Periodic orbits from delta-modulation of stable linear systems. IEEE Transactions on Automatic Control 49(6), 1376–1380 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yan, Y., Yu, X., Yu, S.: Quantization effect on sliding-mode control of a second-order dynamical system. In: Proceedings of IEEE 12th International Workshop on Variable Structure Systems, India, pp. 243–247 (2012)Google Scholar
  22. 22.
    Yan, Y., Yu, X., Yu, S.: Quantization effect on a second-order dynamical system under sliding-mode control. International Journal of Bifurcation and Chaos (2012) (accepted)Google Scholar
  23. 23.
    Xu, J.X., Zheng, F., Lee, T.: On Sampled Data Variable Structure Control Systems. In: Young, K.D., Özgüner, Ü. (eds.) Variable Structure Systems, Sliding Mode and Nonlinear Control. LNCIS, vol. 247, pp. 69–92. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Yu, S., Yu, X., Qian, W.: Time delayed discrete variable structure control with quasi-sliding modes. In: Yu, X., Xu, J.-X. (eds.) Advances in Variable Structure Systems: Analysis, Integration and Applications, pp. 84–92. World Scientific, Singapore (2000)Google Scholar
  25. 25.
    Yu, S.H., Tsai, Y.H.: Sliding-mode quantized control of a class-D audio power amplifier. In: Proceedings of the 2010 International Power Electronics Conference, Japan, pp. 553–556 (2010)Google Scholar
  26. 26.
    Yu, X., Chen, G.: Discretization behaviors of equivalent control based variable structure systems. IEEE Transactions on Automatic Control 48(9), 1641–1646 (2003)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yu, X., Wang, B., Galias, Z., et al.: Discretization effect on equivalent control based multi-input sliding mode control systems. IEEE Transactions on Automatic Control 53(6), 1563–1569 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yu, X., Wang, B., Li, X.: Computer-controlled variable structure systems: The state of the art. IEEE Transactions on Industrial Informatics 8(2), 197–205 (2012)CrossRefGoogle Scholar
  29. 29.
    Yun, S.W., Choi, Y.J., Park, P.: Dynamic output-feedback guaranteed cost control for linear systems with uniform input quantization. Nonlinear Dynamics 62, 95–104 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Zheng, B.C., Yang, G.H.: Quantised feedback stabilisation of planar systems via switching-based sliding-mode control. IET Control Theory and Applications 6, 149–156 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Information Science and TechnologyDalian Maritime UniversityDalianChina
  2. 2.School of Electrical and Computer EngineeringRMIT UniversityMelbourneAustralia
  3. 3.School of AutomationSoutheast UniversityNanjingChina

Personalised recommendations