Comprehensive Approach to Sliding Mode Design and Analysis in Linear Systems

  • Branislava Draženović
  • Čedomir Milosavljević
  • Boban Veselić
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 440)


This chapter considers the design of reduced and integral sliding mode (SM) dynamics for state space systems. The prescribed sliding mode dynamics are selected to have either a desired spectrum or optimal behavior in the linear quadratic regulator (LQR) sense. Due to the operator representation of the system equations, separate treatment of the discrete time (DT) and the continuous time (CT) cases is not needed. Fully decentralized design of the control used to satisfy the reachability problem is possible using the obtained sliding subspaces. For the sake of straightforward analysis of the SM dynamics, a new way to obtain the SM equation, based on singular value decomposition (SVD), is also provided. Algorithms are implemented in MATLAB. Simulations illustrating the usefulness of the developed design method conclude the chapter.


Singular Value Decomposition Slide Mode Control State Space Model Slide Mode Discrete Time System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Utkin, V.I., Yang, K.D.: Methods for constructing discontinuity planes in multidimensional variable systems. Automation and Remote Control 39(10), 1466–1470 (1978)MathSciNetzbMATHGoogle Scholar
  2. 2.
    El-Ghezawi, O.M.E., Zinober, A.S.I.: Analysis and design of variable structure systems using a geometric approach. International Journal of Control 38(3), 657–671 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Dorling, C.M., Zinober, A.S.I.: Two approaches to hyperplane design in multivariable variable structure control systems. International Journal of Control 44(1), 65–82 (1986)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dorling, C.M., Zinober, A.S.I.: Robust hyperplane design in multivariable variable structure control systems. International Journal of Control 48(5), 2043–2054 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Kautsky, J., Nichols, N.K., Van Dooren, P.: Robust pole assignment in linear state feedback. International Journal of Control 41(2), 1129–1155 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chen, Y.-P., Chang, J.-L.: A new method for constructing sliding surfaces of linear time-invariant systems. International Journal of System Science 31(4), 417–420 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Chang, J.-L., Chen, Y.-P.: Sliding vector design based on the pole-assignment method. Asian Journal of Control 2(1), 10–15 (2000)CrossRefGoogle Scholar
  8. 8.
    Chang, J.-L.: Discrete SM control of MIMO linear systems. Asian Journal of Control 4(2), 217–222 (2002)CrossRefGoogle Scholar
  9. 9.
    Huang, J.Y., Yeung, K.S.: Arbitrary eigenvalue assignment via switching hyperplanes design scheme and extension of Ackermann’s formula. In: Proc. IEEE Conference on Computer, Communication, Control and Power Engineering, TENCON 1993, Beijing, vol. 4, pp. 17–20 (1993)Google Scholar
  10. 10.
    Ackermann, J., Utkin, V.: SM Control Design Based on Ackermann’s Formula. IEEE Transactions of Automatic Control 43(2) (1998)Google Scholar
  11. 11.
    Utkin, V., Shi, J.: Integral SM in Systems Operating under Uncertainty Conditions. In: Proceedings of the 35th Conference on Decision and Control, Kobe, Japan (1996)Google Scholar
  12. 12.
    Abidi, K., Xu, J.-X., Xinghuo, Y.: On the Discrete-Time Integral Sliding-mode Control. IEEE Transactions on Automatic Control 52(4), 709–715 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Castanos, F., Xu, J.-X., Fridman, L.: Integral SMs for Systems with Matched and Unmatched Uncertainties. In: Edwards, C., Fossas Colet, E., Fridman, L. (eds.) Advances Variable Structure and SM Control, pp. 227–246. Springer (2006)Google Scholar
  14. 14.
    Hung, Y.S., MacFarlane, A.G.J.: Multivariable Feedback: A Quasi-Classical Approach. LNCIS, vol. 40. Springer (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Branislava Draženović
    • 1
  • Čedomir Milosavljević
    • 2
  • Boban Veselić
    • 3
  1. 1.Faculty of Electrical EngineeringUniversity of SarajevoSarajevoBosnia and Herzegovina
  2. 2.Faculty of Electrical EngineeringUniversity of Istočno SarajevoIstočno SarajevoBosnia and Herzegovina
  3. 3.Faculty of Electronic EngineeringUniversity of NišNišSerbia

Personalised recommendations