High Resolution Software Defined Radar System for Target Detection

  • Sandra Costanzo
  • Francesco Spadafora
  • Antonio Borgia
  • Oswaldo Hugo Moreno
  • Antonio Costanzo
  • Giuseppe Di Massa
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 206)

Abstract

A high resolution Software Defined Radar system is implemented in this work by adopting the new generation Universal Software Radio Peripheral USRP NI2920, a software defined transceiver. The enhanced available bandwidth due to the Gigabit Ethernet interface is exploited to achieve the high range resolution features. At this purpose, a specific Labview application implementing the radar operations is developed. The realized SDRadar system is successfully validated by preliminary outdoor tests accurately retrieving the distance of a reference target.

Keywords

Software Defined Radio Radar Slant Range Resolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Debatty, T.: Software Defined RADAR a state of the art. In: Second International Workshop on Cognitive Information Processing, Brussels, Belgium, pp. 253–257 (2010)Google Scholar
  2. 2.
    Zhang, H., Li, L., Wu, K.: 24ghz software-defined radar system for automotive applications. In: European Conference on Wireless Technologies, Munich, Germany, pp. 138–141 (2007)Google Scholar
  3. 3.
    Kauffman, K., Garmatyuk, D., Schuerger, J.: Multifunctional software-defined radar sensor and data communication system. IEEE Sensors Journal 11, 99–106 (2011)CrossRefGoogle Scholar
  4. 4.
    Aloi, G., Borgia, A., Costanzo, S., Di Massa, G., Loscrì, V., Natalizio, E., Pace, P., Spadafora, F.: Software Defined Radar: synchronization issues and practical implementation. In: COGART, International Conference on Cognitive Radio and Advanced Spectrum Management, Barcelona (2011)Google Scholar
  5. 5.
    Prathyusha, C., Sowmiya, S.N., Ramanathan, S., Soman, R., Amrita, K.P., Deepthi, V.V., Chinnam, M., Nandhini, J.: Implementation of a low cost synthetic aperture radar using software defined radio. In: International Conference on Computing Communication and Networking Technologies (ICCCNT), Karur, TamilNadu, India, pp. 1–7 (2010)Google Scholar
  6. 6.
    Manuel, F., Martin, B., Christian, S., Lars, R., Jondral Friedrich, K.: An SDR-based Experimental Setup for OFDM-based RadaR. In: 7th Karlsruhe Workshop on Software Radio Karlsruhe, Germany (March 2012)Google Scholar
  7. 7.
    Marcus, M., Martin, B., Manuel, F., Jondral Friedrich, K.: A USRP-based Testbed for OFDM-based Radar and Communication Systems. In: 22nd Virginia Tech Symposium on Wireless Communications, Blacksburg (June 2012)Google Scholar
  8. 8.
    Fernandes, V.: Implementation of a RADAR System using MATLAB and the USRP, CSUN ScholarWorks (2012)Google Scholar
  9. 9.
    NI USRP-2920, NI USRP-2921, National Instruments Data-sheet, http://sine.ni.com
  10. 10.
    Mahafza, B.R., Elsherbeni, A.Z.: Simulations for Radar Systems Design. Chapman & Hall /CRC (1999)Google Scholar
  11. 11.
    Skolnik, M.: Radar handbook, 3rd edn., pp. 21.1—21.41. Mc Graw Hill, San Francisco (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sandra Costanzo
    • 1
  • Francesco Spadafora
    • 1
  • Antonio Borgia
    • 1
  • Oswaldo Hugo Moreno
    • 1
  • Antonio Costanzo
    • 1
  • Giuseppe Di Massa
    • 1
  1. 1.DIMESUniversity of CalabriaRendeItaly

Personalised recommendations