Self-Portrait Images for Mobile Application

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 206)

Abstract

Self-portrait using mobile phones has been a popular trend among backpackers, teenagers and travellers. The usage of mobile devices had been escalating over the years, as it is more convenient and portable. However, there were constraints in terms of camera view and angle the mobile devices can capture. Based on my preliminary research, the major problems faced by most backpackers concerns (i) hand distance, (ii) angle and view captured, and (iii) no alternative mechanism or functions in mobile devices that can capture a larger panoramic view in self-portrait. This proposal intends to study the current strategies used by travelers in taking self-portrait by using mobile devices and investigate future mobile image application. The subjects in this study include travellers (backpackers, people travelling alone) and social network users as viewers. The evaluation is to find out if a model of “destination image measurement” could be an attribute towards enhancing mobile application in the future. The concept of destination image measurement has four-distinct components; functional characteristics, psychological characteristics, holistic and attributes. The framework is to establish a strategy to improve self-portrait capturing using mobile devices and the evaluation outcome will be a measurement technique in capturing a more effective self-portrait.

Keywords

Self-portrait Mobile Application Image Measurement Mobile System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jenkins, O.H.: Photography and travel brochures: The circle of representation. Tourism Geographies 5, 305–328 (2003)CrossRefGoogle Scholar
  2. 2.
    Pearce, P.L., Murphy, L., Brymer, E.: Evolution of the backpacker market and the potential for Autralian tourism, pp. 1–2. CRC for Sustainable Tourism Pty Ltd., Australia (2009)Google Scholar
  3. 3.
    House, N.V., Davis, M., Ames, M., Finn, M., Viswanathan, V.: The Uses of Personal Networked Digital Imaging: An Empirical Study of Cameraphone Photos and Sharing. In: CHI EA 2005, pp. 1853–1856 (2005)Google Scholar
  4. 4.
    Aoki, P.M., Szymanski, M.H., Woodruff, A.: Turning from Image Sharing to Experience Sharing. In: Workshop on Pervasive Image Capture and Sharing, 7th Int’l Conf. on Ubiquitous Computing, Ubicomp 2005, pp. 1–3 (2005)Google Scholar
  5. 5.
    House, N.A.: Distant Closeness: Cameraphones and Public Image Sharing. In: CHI EA 2007, pp. 2717–2722 (2007)Google Scholar
  6. 6.
    Xiong, Y., Pulli, K.: Fast Panorama Stitching for High-Quality Panoramic Images on Mobile Phones. IEEE Transaction on Consumer Electronics 56, 1–6 (2010)CrossRefGoogle Scholar
  7. 7.
    Marino, E.D.: The Strategic Dimension of Destination Image. An Analysis of the French Riveira Image From the Italian Tourist’s’ Perceptions. PhD. Tourism Management. University of Naples “Fredrico II” Faculty of Economics (2008)Google Scholar
  8. 8.
    Echtner, C.M., Ritchie, J.B.: The Meaning and Measurement of Destination Image. The Journal of Tourism Studies 14, 37–48 (2003)Google Scholar
  9. 9.
    Szeliski, R., Shum, H.-Y.: Creating full view panoramic image mosaics and environment maps. In: ACM Conference Proceedings, pp. 251–258 (1997)Google Scholar
  10. 10.
    Luhmann, T.: A Histrorical Review on Panorama Photogrammetry. International Archives of Photogrammetry and Remote Sensing 34, 1–6 (2004)Google Scholar
  11. 11.
    Saravanan, P., Narayanan, C.K., Prakash, P.V.S.S., Prabhakara Rao, G.V.: Techniques for Video Mosaicing 5, 286–289 (2005)Google Scholar
  12. 12.
    Steedly, D., Pal, C., Szeliski, R.: Efficiently Registering Video into Panoramic Mosaics. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, vol. 2, pp. 1300–1307 (2005)Google Scholar
  13. 13.
    Lin, Q., Zhang, T., Chen, M., Deng, Y., Obrador, P.: Mining Home Video for Photos (2004)Google Scholar
  14. 14.
    Hoseini, S.A., Jafari, S.: An automated method for mosaicing of video frames with projective constraint. International Journal of Science and Advanced Technology 1, 112–116 (2011)Google Scholar
  15. 15.
    Brown, M., Lowe, D.G.: Recognising Panoramas. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, ICCV 2003, vol. 2, pp. 1218–1227 (2003)Google Scholar
  16. 16.
    Szeliski, R.: Video Mosaics for Virtual Environments. IEEE Computer Graphics and Application 16, 22–30 (1996)CrossRefGoogle Scholar
  17. 17.
    Steedly, D., Pal, C., Szeliski, R.: Efficiently Registering Video into Panoramic Mosaics. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1300–1307 (2005)Google Scholar
  18. 18.
    Deng, Y., Zhang, T.: Generating Panorama Photos. In: Proc. of SPIE Internet Multimedia Management Systems IV, vol. 5242, pp. 270–279 (2003)Google Scholar
  19. 19.
    Pritch, Y., Poleg, Y., Peleg, S.: Snap Image Composition. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2011. LNCS, vol. 6930, pp. 181–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Jia, J., Tang, C.-K.: Image Stitching Using Structure Deformation. IEEE Trans. Pattern Analysis And Machine Intelligence 30, 617–631 (2008)CrossRefGoogle Scholar
  21. 21.
    Rankov, V., Locke, R.J., Edens, R.J., Barber, P.R., Vojnovic, B.: An algorithm for image stitching and blending. In: Proceedings of SPIE, vol. 5701, pp. 190–199 (2005)Google Scholar
  22. 22.
    Singaraju, D., Vidal, R.: Interactive Image Matting for Multiple Layers. In: CVPR, pp. 1–7 (2008)Google Scholar
  23. 23.
    Jia, J., Sun, J., Tang, C.-K., Shum, H.-Y.: Drag-and-Drop Pasting. ACM Trans. Graph. 631–637 (2006)Google Scholar
  24. 24.
    Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 243–248 (2001)Google Scholar
  25. 25.
    Levin, A., Zomet, A., Peleg, S., Weiss, Y.: Seamless Image Stitching in the Gradient Domain. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 377–389. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Jia, J., Tang, C.-K.: Image: Stitching Using Structure Deformation. IEEE Trans. Pattern Analysis and Machine Intelligence 30, 617–631 (2008)CrossRefGoogle Scholar
  27. 27.
    Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Transactions on Image Processing 15(2), 430–444 (2006)CrossRefGoogle Scholar
  28. 28.
    Wang, Z., Bovik, A.C., Sheikh, H.R.: Image Quality Assessment: From Error Visibility to structural Similarity 13, 1–13 (2004)Google Scholar
  29. 29.
    Echtner, C.M., Ritchie, J.B.: The Meaning and Measurement of Destination Image. The Journal of Tourism Studies 14, 37–48 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Information System, Faculty of Science and TechnologySunway UniveristySelangor Darul EhsanMalaysia
  2. 2.School of Information Technology, Faculty of Business and Infromation ScienceUCSI UniversityCherasMalaysia

Personalised recommendations