Network Based Analysis of Intertextual Relations

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 206)

Abstract

We present an approach of intertextuality in terms of graph theories, statistics, and bakhtinian polyphony, the latter perspective considering the way in which discourse threads are influencing each other. This paper presents theoretical models, processing techniques with their applications and results that acknowledge as important the approach based on networks of intertextuality. In the end are introduced two original applications of supervised and unsupervised analysis of antique texts of philosophical and religious nature.

Keywords

intertextuality discourse polyphony text mining natural language processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barabási, A.-L., et al.: Scale-free characteristics of random networks: The topology of the World Wide Web. Physica A 281, 69–77 (1999)CrossRefGoogle Scholar
  2. 2.
    Bianconi, G., Barbási, A.-L.: Bose-einstein condensation in complex networks. Physical Review Letters 86(24), 5632–5635Google Scholar
  3. 3.
    Milgram, S.: The small-world problem. Psychology Today 2, 60–67 (1967)Google Scholar
  4. 4.
    Redner, S.: How popular is your paper? An empirical study of the citation distribution. European Physical Journal B(4), 131–134 (1998)Google Scholar
  5. 5.
    Mehler, M.A.: Text minning with the help of cohesion trees. In: Gaul, W., et al. (eds.) Classification, Automation, and New Media: Proceedings of the 24th Annual. Springer (2002)Google Scholar
  6. 6.
    Bakhtin, M.: Problems of Dostoevsky’s Poetics. University of Minnesota Press (1984)Google Scholar
  7. 7.
    Hoey, M.: Patterns of Lexis in Text. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)MATHGoogle Scholar
  9. 9.
    Tanskanen, S.-K.: Collaborating towards Coherence. John Benjamin, Amsterdam (2006)Google Scholar
  10. 10.
    Ferrer i Cancho, R., et al.: Patterns in syntactic dependency-networks. Physical Review E(69), 051915 (2004)Google Scholar
  11. 11.
    Ferrer i Cancho, R., Solé, R.V.: The small-world of human language. Royal Society of London. Series B, Biological Sciences 268(1482), 2261–2265 (2001)CrossRefGoogle Scholar
  12. 12.
    Glance, N., et al.: Blogpulse: Automated trend discovery for weblogs. In: Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics, WWW 2004 (2004)Google Scholar
  13. 13.
    Glänzel, W., Czerwon, H.-J.: A new methodological approach to bibliographic coupling and its application to the national, regional and institutional level. Scientometrics 37(2), 195–221 (1996)CrossRefGoogle Scholar
  14. 14.
    Jussen, B., et al.: A corpus management system for historical semantics, sprache und datenverarbeitung. International Journal for Language Data Processing 31(1-2) (2007)Google Scholar
  15. 15.
    Mehler, M.A., et al.: Time Series of Linguistic Networks by Example of the Patrologia Latina. Goethe-Universität Frankfurt am Main. Course presentationGoogle Scholar
  16. 16.
    Mehler, M.A.: Large text networks as an object of corpus linguistic studies. Technical report, Bielefeld University, D-33615 Bielefeld, Germany (2007)Google Scholar
  17. 17.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  18. 18.
    Chandler, D.: Semiotics for Beginners, http://www.aber.ac.uk/media/Documents/S4B/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ioan Cristian Ghiban
    • 1
  • Ştefan Trǎuşan-Matu
    • 1
    • 2
  1. 1.University “Politehnica” of BucharestBucharestRomania
  2. 2.Institutul de Cercetări în Inteligenţă ArtificialăBucharestRomania

Personalised recommendations