New Crime Detection with LBP and GANN

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 206)

Abstract

A current review of media sources indicates crimes of opportunity such as burglaries, purse-snatchings and vehicle theft, are consistently the most topical crime problems. The Malaysian government has taken several steps to increase police effectiveness and reduce crime since 2004. But their effectiveness is limited by low salaries and lack of manpower. Verily to compile a comprehensive afford of crime fighting capabilities. We present an explicit system to detect a crime scene with Local Binary Pattern (LBP) and a fusion of Genetic Algorithm with Neural Network (GANN). This system provided a good justification as a monitoring supplementary tool for the Malaysian police arm forced.

Keywords

Crime rate Local Binary Pattern Genetic Algorithm Neural Network Feed Forward Neural Network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Charles, L.: ‘More crimes last year, but fewer violent ones’ The Star on Line (January 10, 2008), http://thestar.com.my/news/story.asp?file=/2008/1/10/nation/19964810&sec=nation (accessed January 5, 2010)
  2. 2.
    ACP Amar Singh Sidhu, This Rise of Crime in Malaysia An Academic and Statistical Analysis. Journal of the Kuala Lumpur Royal Malaysia Police College (4), 25 (March 23-24, 2005), http://mpk.rmp.gov.my/jurnal/2005/riseofcrime.pdf (accessed January 6, 2010)
  3. 3.
    Feedom House 2010, Freedom in the World – Malaysia (June 2010), http://www.freedomhouse.org/template.cfm?page=363&year=2010 (accessed September 10, 2010)
  4. 4.
    Nanni, L., Brahnam, S., Lumini, A.: Selecting the Best Performing Rotation Invariant Patterns in Local Binary/Ternary Patterns. In: IPCV 2010, pp. 369–375 (2010)Google Scholar
  5. 5.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  7. 7.
    Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Ahonen, T., Pietikäinen, M.: Pixelwise Local Binary Pattern Models of Faces Using Kernel Density Estimation. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 52–61. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative sudy of texture measures with classification based on feature distributions. Elsevier J. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  10. 10.
    Fiszelew, A., Britos, P., Ochoa, A., Merlino, H., Fernndez, E., Garca-Martnez, R.: Finding Optimal Neural Network Architecture Using Genetic Algorithms. Research in Computing Science 27, 15–24 (2007)Google Scholar
  11. 11.
    Mansor, M.N., Yaacob, S., Nagarajan, R., Hariharan, M.: Coma Patients Expression Analysis under Different Lighting using k-NN and LDA. International Journal of Signal and Image Processing (IJSIP) 1(4), 249–254 (2010)Google Scholar
  12. 12.
    Mansor, M.N., Idris, A.B., Yaacob, S., Nagarajan, R., Hariharan, M.: Quantifying of Paraplegic Patient Facial Agitation based on Fuzzy k-NN. Journal of Computer Technology and Application (JCTA) 2(1), 24–28 (2011)Google Scholar
  13. 13.
    Mansor, M.N., Yaacob, S., Nagarajan, R., Hariharan, M.: Reckoning of Facial Grimacing Scheme for Patient Agitation in Critical Care. International Journal of Research and Reviews in Artificial Intelligence (IJRRAI) 1(1), 20–24 (2011)Google Scholar
  14. 14.
    Satiyan, M., Nagarajan, R., Hariharan, M.: Recognition of Facial Expression using Haar Wavelet Transform. Transaction on International Journal of Electrical and Electronic Systems Research (IEESR) 3, 91–99 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Engineering Mathematics (IMK)University Malaysia perlisKangarMalaysia
  2. 2.Intelligent Signal Processing Group (ISP)University Malaysia perlisKangarMalaysia

Personalised recommendations