Skip to main content

High-Level Language to Build Poker Agents

  • Conference paper
Advances in Information Systems and Technologies

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 206))

Abstract

On the last decade Poker has been one of the most interesting subjects for artificial intelligence, because it is a game that requires game playing agents to deal with an incomplete information and stochastic scenario. The development of Poker agents has seen significant advances but it is still hard to evaluate agents’ performance against human players. This is either because it is illicit to use agents in online games, or because human players cannot create agents that play like themselves due to lack of knowledge on computer science and/or AI. The purpose of this work is to fill the gap between poker players and AI in Poker by allowing players without programming skills to build their own agents. To meet this goal, a high-level language of poker concepts – PokerLang – was created, whose structure is easy to read and interpret for domain experts. This language allows for the quick definition of an agent strategy. A graphical application was also created to support the writing of PokerLang strategies. To validate this approach, some Poker players created their agents using the graphical application. Results validated the usability of the application and the language that supports it. Moreover, the created agents showed very good results against agents developed by other experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Billings, D., Papp, D., Schaeffer, J., Szafron, D.: Opponent modeling in poker. In: National Conf. on AI, pp. 493–499. John Wiley & Sons (1998)

    Google Scholar 

  2. Billings, D., Papp, D., Peña, L., Schaeffer, J., Szafron, D.: Using selective-sampling simulations in poker. In: AAAI Syring Symp. Search Tec. for Problem Solving under Uncertainty and Incomplete Information, pp. 1–6 (1999)

    Google Scholar 

  3. Zinkevich, M., Bowling, M., Burch, N.: A new algorithm for generating equilibria in massive zero-sum games. In: AAAI 2007, vol. 1, pp. 788–793 (2007)

    Google Scholar 

  4. Johanson, M.: Robust Strategies and Counter-Strategies: Building a Champion Level Computer Poker Player (2007)

    Google Scholar 

  5. Johanson, M., Bowling, M.: Data biased robust counter strategies. In: AISTATS 2009, pp. 264–271 (2009)

    Google Scholar 

  6. Teofilo, L.F., Reis, L.P.: HoldemML: A framework to generate No Limit Hold’em Poker agents from human player strategies. In: CISTI 2011, pp. 755–760 (2011)

    Google Scholar 

  7. Teófilo, L.F., Reis, L.P.: Building a No Limit Texas Hold’em Poker Agent Based on Game Logs Using Supervised Learning. In: Kamel, M., Karray, F., Gueaieb, W., Khamis, A. (eds.) AIS 2011. LNCS, vol. 6752, pp. 73–82. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Van den Broeck, G., Driessens, K., Ramon, J.: Monte-Carlo Tree Search in Poker Using Expected Reward Distributions. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS, vol. 5828, pp. 367–381. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Teófilo, L.F., Passos, N., Reis, L.P., Cardoso, H.L.: Adapting Strategies to Opponent Models in Incomplete Information Games: A Reinforcement Learning Approach for Poker. In: Kamel, M., Karray, F., Hagras, H. (eds.) AIS 2012. LNCS, vol. 7326, pp. 220–227. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Rubin, J., Watson, I.: Case-based strategies in computer poker. AI Communications 25, 19–48 (2012)

    MathSciNet  Google Scholar 

  11. Rubin, J., Watson, I.: Computer poker: A review. Artificial Intelligence 175, 958–987 (2011)

    Article  MathSciNet  Google Scholar 

  12. Teofilo, L.F., Reis, L.P., Cardoso, H.L.: Computer Poker Research at LIACC. In: Computer Poker Symposium, AAAI 2012 (2012)

    Google Scholar 

  13. Technologies, S.: Poker Programming Language User Guide (2009)

    Google Scholar 

  14. Reis, L.P., Lau, N.: COACH UNILANG - A Standard Language for Coaching a (Robo)Soccer Team. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 183–192. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Reis, L.P., Oliveira, E.C.: A Language for Specifying Complete Timetabling Problems. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 322–341. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Pereira, A., Duarte, P., Reis, L.P.: ECOLANG - A Communication Language for Simulations of Complex Ecological Systems. In: Merkuriev, Y., Zobel, R., Kerckhoffs, E. (eds.) ECMS 2005, Riga Latvia, pp. 493–500 (2005)

    Google Scholar 

  17. Neves, R., Reis, L.P., Abreu, P., Faria, B.M.: A multi-agent system to help Farmville players on game management tasks. In: CISTI 2012, pp. 409–414 (2012)

    Google Scholar 

  18. Reis, L.P., Lau, N.: FC Portugal Team Description: RoboCup 2000 Simulation League Champion. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 29–40. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Reis, L.P., Lau, N., Oliveira, E.C.: Situation Based Strategic Positioning for Coordinating a Team of Homogeneous Agents. In: Hannebauer, M., Wendler, J., Pagello, E. (eds.) ECAI-WS 2000. LNCS (LNAI), vol. 2103, pp. 175–197. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Abreu, P.H., Moura, J., Silva, D.C., Reis, L.P., Garganta, J.: Performance analysis in soccer: A Cartesian coordinates based approach using RoboCup data. Soft Computing 16, 47–61 (2012)

    Article  Google Scholar 

  21. Mota, L., Reis, L.P., Lau, N.: Multi-robot coordination using Setplays in the middle-size and simulation leagues. Mechatronics 21, 434–444 (2011)

    Article  Google Scholar 

  22. Harrington, D., Robertie, B.: Harrington on Hold ’em Expert Strategy for No Limit Tournaments. Strategic Play, vol. 1. Two Plus Two Pub. (2004)

    Google Scholar 

  23. Teófilo, L.F.: Estimating the Probability of Winning for Texas Hold’em Poker Agents. In: 6th Doctoral Symposium on Inf. Eng., pp. 129–140 (2011)

    Google Scholar 

  24. Sklansky, D.: The Theory of Poker: A Professional Poker Player Teaches You How to Think Like One. Two Plus Two (2007)

    Google Scholar 

  25. Felix, D., Reis, L.P.: An Experimental Approach to Online Opponent Modeling in Texas Hold’em Poker. In: Zaverucha, G., da Costa, A.L. (eds.) SBIA 2008. LNCS (LNAI), vol. 5249, pp. 83–92. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Felix, D., Reis, L.P.: Opponent Modelling in Texas Hold’em Poker as the Key for Success. In: Ghalib, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N. (eds.) ECAI 2008 – 18th European Conference on Artificial Intelligence, Patras, Greece, vol. 178, pp. 893–894. IOS Press (2008)

    Google Scholar 

  27. Teófilo, L.F., Rossetti, R., Reis, L.P., Cardoso, H.L.: A Simulation System to Support Computer Poker Research. In: 13th MABS 2012, Valência (2012)

    Google Scholar 

  28. Zinkevich, M., Littman, M.L.: The 2006 AAAI Computer Poker Competition. Journal of International Computer Games Association, 166–167 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Paulo Reis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reis, L.P., Mendes, P., Teófilo, L.F., Cardoso, H.L. (2013). High-Level Language to Build Poker Agents. In: Rocha, Á., Correia, A., Wilson, T., Stroetmann, K. (eds) Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36981-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36981-0_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36980-3

  • Online ISBN: 978-3-642-36981-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics