Building Accountability for Decision-Making into Cognitive Systems

  • Victoria L. Lemieux
  • Thomas Dang
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 206)


This paper lays out a theoretical framework for engineering accountability for decision-making into cognitive systems, based on a combination of theories from the fields of archival and cognitive science, and demonstrates the application of this framework in a prototype cognitive system - an interactive visual dashboard for fixed income analytics.


cognitive systems engineering cognitive science archival science records accountability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kelly, J.E.: Welcome to the era of cognitive systems (May 10, 2012),
  2. 2.
    Computing Research Association. Grand Research Challenges in Information Systems. CRA, Washington, D.C. (2002) Google Scholar
  3. 3.
    Thomas, J.J., Cook, K.: Illuminating the path: the research and development agenda for visual analytics. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  4. 4.
    Kosslyn, S.M.: Image and Mind. Harvard University Press, Cambridge (1980)Google Scholar
  5. 5.
    Lurie, N.H., Mason, C.: Visual representation: implications for decision making. J. Mark. 71, 160–177 (2007)CrossRefGoogle Scholar
  6. 6.
    Ward, M., Grinstein, G., Keim, D.: Interactive data visualization: foundations, techniques, and applications. AK Peters/CRC Press, Massachusetts (2010)Google Scholar
  7. 7.
    Munzner, T.: Visualization. In: Ashikhminand, S.P., Marshner, S. (eds.) Fundamental of Graphics, 3rd edn. AK Peters/CRC Press, Massachusetts (2009)Google Scholar
  8. 8.
    Tegarden, D.P.: Business visualization. Commun. Assoc. Inf. Sys. 1, 2–38 (1999)Google Scholar
  9. 9.
    Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, N.Y. (1977)zbMATHGoogle Scholar
  10. 10.
    Cooley, J.G., McKneely, J.A.B.: Command and Control Systems Engineering: Integrating Rapid Prototyping and Cognitive Engineering. Johns Hopkins APL Technical Digest 31(1), 31–42 (2012)Google Scholar
  11. 11.
    Gratton, L.: The shift: The future of work is already here. HarperCollins, London (2011)Google Scholar
  12. 12.
    Thagard, P.: Cognitive Architectures. In: Frankish, K., Ramsey, W.M. (eds.) The Cambridge Handbook of Cognitive Science. Cambridge University Press, Cambridge (2012)Google Scholar
  13. 13.
    Oaksford, L., Chater, N., Steward, N.: Reasoning and Decision-Making. In: Frankish, K., Ramsey, W.M. (eds.) The Cambridge Handbook of Cognitive Science. Cambridge University Press, Cambridge (2012)Google Scholar
  14. 14.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database, vol. 147, pp. 195–197. MIT Press, Cambridge (1981)Google Scholar
  15. 15.
    Hoskins, K.: The ‘Awful’ Idea of Accountability: Inscribing People into the Measurement of Objects. In: Munro, R., Mouritsen, J. (eds.) Accountability: Power, Ethos and Technologies of Managing. International Thompson Business Press, London (1996)Google Scholar
  16. 16.
    Stewart, J.D.: The Role of Information in Public Accountability. In: Hopwood, A., Tomkins, C. (eds.) Issues in Public Sector Accounting. Philip Allen, Oxford (1984)Google Scholar
  17. 17.
    InterPARES 2 Terminology Database,
  18. 18.
    Duranti, L.: New uses for an old science. SAA, ACA, and Scarecrow Press, Chicago (1998)Google Scholar
  19. 19.
    Yeo, G.: Concepts of record (1): evidence, information, and persistent representations. American Archivist 70(2), 315–343 (2007)Google Scholar
  20. 20.
    Yeo, G.: Concepts of record (2): prototypes and boundary objects. American Archivist 71(1), 118–143 (2008)Google Scholar
  21. 21.
    Reed, B.: Records. In: McKemmish, S., Piggott, M., Reed, B., Upward, F. (eds.) Archives: Recordkeeping in Society, pp. 101–130. Charles Sturt University, Centre for Information Studies, WaggaWagga NSW (2005)Google Scholar
  22. 22.
    Duranti, L.: The archival bond. Arch. Mus. Informatics 11, 213–218Google Scholar
  23. 23.
    Gotz, D., Zhou, M.: Characterizing users’ visual analytic activity for insight provenance. In: Proc. Visual Analytics Science and Technology, pp. 123–130 (2008)Google Scholar
  24. 24.
    Kadivar, N., Chen, V., Dunsmuir, D., Lee, E., Qian, C., Shaw, C., Woodbury, R.: Capturing and supporting the analytic process. IEEE Visual Analytics Science and Technology, 131–138 (2009)Google Scholar
  25. 25.
    Klein, G., Moon, B., Hoffman, R.R.: Making Sense of Sensemaking 1: Alternative Perspectives. IEEE Intelligent Systems 21(4), 7–73 (2006)Google Scholar
  26. 26.
    Pirolli, P., Card, S.K.: Information Foraging. Psychological Review 106(4), 643–675 (1999)CrossRefGoogle Scholar
  27. 27.
    Chen, V., Alimadadi, S., Guenther, J., Kadivar, N., Lee, E., Dill, J., Woodbury, R.: CZSaw [computer software],
  28. 28.
    Chen, Y., Yang, J., Ribarsky, W.: Toward Effective Insight Management in Visual Analytic Systems. In: Visualization Symposium, PacificVis 2009, pp. 49–56. IEEE Pacific (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.iSchool@UBC 4th Floor, I.K. Barber Learning CentreUniversity of British ColumbiaVancouverCanada

Personalised recommendations