Advertisement

Analyzing Website Content for Improved R&T Collaboration Planning

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 206)

Abstract

A well-known problem in research and technology (R&T) planning is the selection of suited R&T collaboration partners. We investigate the use of textual information from the website content of possible collaboration candidates to identify their suitability. This improves the selection of collaboration partners and it enables a successful processing of R&T-projects. In a case study ‘defense R&T’, organizations and companies that have proven their suitability as collaboration partner in former R&T projects are selected (positive examples) as well as organizations and companies that have not. Latent semantic indexing with singular value decomposition and logistic regression modeling is used to identify semantic textual patterns from their websites’ content. As a result of prediction modeling, some of these textual patterns are successful in predicting new organizations or companies as (un-) suited R&T collaboration partners. These results support the acquisition of new collaboration partners and thus, they are valuable for the planning of R&T.

Keywords

Collaboration Research Technology Semantic Classification Text Mining Defense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thorleuchter, D., Van den Poel, D.: Technology classification with latent semantic indexing. Expert. Syst. Appl. 40(5), 1786–1795 (2013)CrossRefGoogle Scholar
  2. 2.
    Bammer, G.: Enhancing research collaborations: Three key management challenges. Res. Pol. 37(5), 875–887 (2008)CrossRefGoogle Scholar
  3. 3.
    Heinze, T., Kuhlmann, S.: Across institutional boundaries?: Research collaboration in German public sector nanoscience. Res. Policy 37(5), 888–899 (2008)CrossRefGoogle Scholar
  4. 4.
    Thorleuchter, D., Van den Poel, D.: Semantic Technology Classification. In: International Conference on Uncertainty Reasoning and Knowledge Engineering, pp. 36–39. IEEE Press, New York (2011)CrossRefGoogle Scholar
  5. 5.
    Van Rijnsoever, F.J., Hessels, L.K.: Factors associated with disciplinary and interdisciplinary research collaboration. Res. Policy 40(3), 463–472 (2011)CrossRefGoogle Scholar
  6. 6.
    He, Z.L., Geng, X.S., Campbell-Hunt, C.: Research collaboration and research output: A longitudinal study of 65 biomedical scientists in a New Zealand university. Res. Policy 38(2), 306–317 (2009)CrossRefGoogle Scholar
  7. 7.
    Ballantine, J., Levy, M., Powell, P.: Evaluating information systems in small and medium-sized enterprises: issues and evidence. Eur. J. Inform. Syst. 7, 241–251 (1998)CrossRefGoogle Scholar
  8. 8.
    Serafeimidis, V., Smithson, S.: Information systems evaluation as an organizational institution - experience from a case study. Inform. Syst. J. 13, 251–274 (2003)CrossRefGoogle Scholar
  9. 9.
    Thorleuchter, D., Van den Poel, D., Prinzie, A.: Analyzing existing customers’ websites to improve the customer acquisition process as well as the profitability prediction in B-to-B marketing. Expert. Syst. Appl. 39(3), 2597–2605 (2012)CrossRefGoogle Scholar
  10. 10.
    Thorleuchter, D., Van den Poel, D.: Using Webcrawling of Publicly-Available Websites to Assess E-Commerce Relationships. In: Service Research and Innovation Institute 2011 (SRII 2011), pp. 402–410. IEEE Press, New York (2012)Google Scholar
  11. 11.
    Lihui, C., Lian, C.W.: Using Web structure and summarisation techniques for Web content mining. Inform. Process. Manag. 41(5), 1225–1242 (2005)CrossRefGoogle Scholar
  12. 12.
    Thorleuchter, D., Van den Poel, D.: Predicting e-commerce company success by mining the text of its publicly-accessible website. Expert. Syst. Appl. 39(17), 13026–13034 (2012)CrossRefGoogle Scholar
  13. 13.
    Thorleuchter, D., Weck, G., Van den Poel, D.: Granular Deleting in Multi Level Security Models – An Electronic Engineering Approach. In: Jin, D., Lin, S. (eds.) Advances in Mechanical and Electronic Engineering. LNEE, vol. 177, pp. 609–614. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Thorleuchter, D., Weck, G., Van den Poel, D.: Usability Based Modeling for Advanced IT-Security – An Electronic Engineering Approach. In: Jin, D., Lin, S. (eds.) Advances in Mechanical and Electronic Engineering. LNEE, vol. 177, pp. 615–619. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Thorleuchter, D., Van den Poel, D.: High Granular Multi-Level-Security Model for Improved Usability. In: 2nd International Conference on System Science, Engineering Design and Manufacturing Informatization, pp. 191–194. IEEE Press, New York (2011)CrossRefGoogle Scholar
  16. 16.
    Gericke, W., Thorleuchter, D., Weck, G., Reilaender, F., Loss, D.: Vertrauliche Verarbeitung staatlich eingestufter Information - die Informationstechnologie im Geheimschutz. Informatik Spektrum 32(2), 102–109 (2009)CrossRefGoogle Scholar
  17. 17.
    Thorleuchter, D., Van den Poel, D.: Rapid Scenario Generation with Generic Systems. In: Management Sciences and Information Technology. Lecture Notes in Information Technology, IERI, Delaware (2012) (in press)Google Scholar
  18. 18.
    Zheng, H.T., Kang, B.Y., Kim, H.G.: Exploiting noun phrases and semantic relationships for text document clustering. Inform. Sciences 179(13), 2249–2262 (2009)CrossRefGoogle Scholar
  19. 19.
    Thorleuchter, D., Schulze, J., Van den Poel, D.: Improved Emergency Management by a Loosely Coupled Logistic System. In: Aschenbruck, N., Martini, P., Meier, M., Tölle, J. (eds.) Future Security 2012. CCIS, vol. 318, pp. 5–8. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Thorleuchter, D., Van den Poel, D.: Companies Website Optimising concerning Consumer’s searching for new Products. In: International Conference on Uncertainty Reasoning and Knowledge Engineering, pp. 40–43. IEEE Press, New York (2011)CrossRefGoogle Scholar
  21. 21.
    Sparck Jones, K.: Collection properties influencing automatic term classification performance. Inform. Storage Retrieval 9(9), 499–513 (1973)CrossRefGoogle Scholar
  22. 22.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inform. Process. Manag. 24(5), 513–523 (1988)CrossRefGoogle Scholar
  23. 23.
    Zhang, W., Yoshida, T., Tang, X.: A comparative study of TF*IDF, LSI and multi-words for text classification. Expert. Syst. Appl. 38(3), 2758–2765 (2011)CrossRefGoogle Scholar
  24. 24.
    Thorleuchter, D., Van den Poel, D.: Extraction of Ideas from Microsystems Technology. In: Jin, D., Lin, S. (eds.) Advances in CSIE, Vol. 1. AISC, vol. 168, pp. 563–568. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Thorleuchter, D., Herberz, S., Van den Poel, D.: Mining Social Behavior Ideas of Przewalski Horses. In: Wu, Y. (ed.) Advances in Computer, Communication, Control and Automation. LNEE, vol. 121, pp. 649–656. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    D’Haen, J., Van den Poel, D., Thorleuchter, D.: Predicting Customer Profitability During Acquisition: Finding the Optimal Combination of Data Source and Data Mining Technique. Expert. Syst. Appl. (in press, 2013), doi:10.1016/j.eswa.2012.10.023Google Scholar
  27. 27.
    Chen, M.Y., Chu, H.C., Chen, Y.M.: Developing a semantic-enable information retrieval mechanism. Expert. Syst. Appl. 37(1), 322–340 (2010)CrossRefGoogle Scholar
  28. 28.
    DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Bio-metrics 44(3), 837–845 (1988)MATHGoogle Scholar
  29. 29.
    Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 131(1), 29–36 (1982)Google Scholar
  30. 30.
    Thorleuchter, D., Van den Poel, D.: Using NMF for Analyzing War Logs. In: Aschenbruck, N., Martini, P., Meier, M., Tölle, J. (eds.) Future Security 2012. CCIS, vol. 318, pp. 73–76. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  31. 31.
    Thorleuchter, D., Van den Poel, D.: Protecting Research and Technology from Espionage. Expert. Syst. Appl. (in press, 2013), doi:10.1016/j.eswa.2012.12.051Google Scholar
  32. 32.
    Thorleuchter, D., Van den Poel, D., Prinzie, A.: Mining Ideas from Textual Information. Expert. Syst. Appl. 37(10), 7182–7188 (2010)CrossRefGoogle Scholar
  33. 33.
    Thorleuchter, D., Van den Poel, D.: Improved Multilevel Security with Latent Semantic Indexing. Expert. Syst. Appl. 39(18), 13462–13471 (2012)CrossRefGoogle Scholar
  34. 34.
    Thorleuchter, D., Van den Poel, D., Prinzie, A.: A compared R&D-based and patent-based cross impact analysis for identifying relationships between technologies. Technol. Forecast. Soc. Change 77(7), 1037–1050 (2010)CrossRefGoogle Scholar
  35. 35.
    Thorleuchter, D., Van den Poel, D.: Web Mining based Extraction of Problem Solution Ideas. Expert. Syst. Appl. (in press, 2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fraunhofer INTEuskirchenGermany
  2. 2.Faculty of Economics and Business AdministrationGhent UniversityGentBelgium

Personalised recommendations