Skip to main content

Aggregation Operators and Interval-Valued Fuzzy Numbers in Decision Making

  • Conference paper
Advances in Information Systems and Technologies

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 206))


Aggregation operators play a fundamental role in decision making, especially when there are numerous (conflicting) criteria present. In case of uncertain data, an important task is to develop appropriate solutions for the aggregation process. In many applications the knowledge and data provided by the experts tend to be vague, as experts express their knowledge in non-structured and ambiguous ways, for instance by using linguistic terms. We combine interval-valued fuzzy sets and OWA operators to create new aggregation methods and we prove that the new operators satisfy some important properties. In this article we present novel approaches for aggregating vague and imprecise information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Chiclana, F., Herrera-Viedma, E., Herrera, F., Alonso, S.: Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations. European Journal of Operational Research 182(1), 383–399 (2007)

    Article  MATH  Google Scholar 

  2. Xu, Z., Da, Q.: An overview of operators for aggregating information. International Journal of Intelligent Systems 18(9), 953–969 (2003)

    Article  MATH  Google Scholar 

  3. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on Systems, Man, and Cybernetics 18(1), 183–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yager, R.R., Kacprzyk, J., Beliakov, G. (eds.): Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice. STUDFUZZ, vol. 265. Springer, Heidelberg (2011)

    Google Scholar 

  5. Zhou, S., John, R., Chiclana, F., Garibaldi, J.: On aggregating uncertain information by type-2 owa operators for soft decision making. International Journal of Intelligent Systems 25(6), 540–558 (2010)

    MATH  Google Scholar 

  6. Zadeh, L.A.: The concept of a linguistic variable and its applications to approximate reasoning. Information Sciences, Part I, II, III, 8, 8, 9,199–249, 301–357, 43–80 (1975)

    Google Scholar 

  7. Zhang, Z.: On characterization of generalized interval type-2 fuzzy rough sets. Information Sciences 219(0), 124–150 (2013)

    Article  Google Scholar 

  8. Machacha, L., Bhattacharya, P.: A fuzzy-logic-based approach to project selec¬tion. IEEE Transactions on Engineering Management 47(1), 65–73 (2000)

    Article  Google Scholar 

  9. Gutjahr, W., Katzensteiner, S., Reiter, P., Stummer, C., Denk, M.: Multi-objective decision analysis for competence-oriented project portfolio selection. European Journal of Operational Research 205(3), 670–679 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, C., Hsieh, P.: A fuzzy decision support system for strategic portfolio man-agement. Decision Support Systems 38(3), 383–398 (2004)

    Article  Google Scholar 

  11. Gorzałczany, M.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy sets and systems 21(1), 1–17 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu, D., Mendel, J.: A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Information Sciences 179(8), 1169–1192 (2009)

    Article  MathSciNet  Google Scholar 

  13. Mitchell, H.: Ranking type-2 fuzzy numbers. IEEE Transactions on Fuzzy Systems 14(2), 287–294 (2006)

    Article  Google Scholar 

  14. Carlsson, C., Fuller, R., Mezei, J.: Project selection with interval-valued fuzzy numbers. In: 2011 IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 23–26. IEEE (2011)

    Google Scholar 

  15. Yager, R.R., Filev, D.P.: Induced ordered weighted averaging operators. IEEE Transactions on Systems, Man, and Cybernetics 29(2), 141–150 (1999)

    Article  Google Scholar 

  16. Merigó, J., Gil-Lafuente, A.: Fuzzy induced generalized aggregation operators and its application in multi-person decision making. Expert Systems with Applications 38(8), 9761–9772 (2011)

    Article  Google Scholar 

  17. Merigó, J., Casanovas, M.: The fuzzy generalized owa operator and its application in strategic decision making. Cybernetics and Systems: An International Journal 41(5), 359–370 (2010)

    Article  Google Scholar 

  18. Chen, S.J., Chen, S.M.: A new method for handling multicriteria fuzzy decision -making problems using fn-iowa operators. Cybernetics & Systems 34(2), 109–137 (2003)

    Article  MATH  Google Scholar 

  19. Lee, Y., Kim, S., Lee, H.: The impact of service r&d on the performance of Korean information communication technology small and medium enterprises. Journal of Engineering and Technology Management 28(1), 77–92 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to József Mezei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mezei, J., Wikström, R. (2013). Aggregation Operators and Interval-Valued Fuzzy Numbers in Decision Making. In: Rocha, Á., Correia, A., Wilson, T., Stroetmann, K. (eds) Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 206. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36980-3

  • Online ISBN: 978-3-642-36981-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics