Pervasive Intelligent Decision Support System – Technology Acceptance in Intensive Care Units

  • Filipe Portela
  • Jorge Aguiar
  • Manuel Filipe Santos
  • Álvaro Silva
  • Fernado Rua
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 206)

Abstract

Intensive Care Units are considered a critical environment where the decision needs to be carefully taken. The real-time recognition of the condition of the patient is important to drive the decision process efficiently. In order to help the decision process, a Pervasive Intelligent Decision Support System (PIDSS) was developed. To provide a better comprehension of the acceptance of the PIDSS it is very important to assess how the users accept the system at level of usability and their importance in the Decision Making Process. This assessment was made using the four constructs proposed by the Technology Acceptance Methodology and a questionnaire-based approach guided by the Delphi Methodology. The results obtained so far show that although the users are satisfied with the offered information recognizing its importance, they demand for a faster system.

Keywords

TAM INTCare Technology Acceptance Intensive Care Decision Support System Pervasive Technology Assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baggs, J.G., Norton, S.A., Schmitt, M.H., Dombeck, M.T., Setters, C.R., Quinn, J.R.: Intensive care unit cultures and end-of-life decision making. Journal of Critical Care 22, 159–168 (2007)CrossRefGoogle Scholar
  2. 2.
    Mador, R.L., Shaw, N.T.: The impact of a Critical Care Information System (CCIS) on time spent charting and in direct patient care by staff in the ICU: a review of the literature. International Journal of Medical Informatics 78, 435–445 (2009)CrossRefGoogle Scholar
  3. 3.
    Portela, F., Santos, M.F., Machado, J., Silva, Á., Rua, F., Abelha, A.: Intelligent Data Acquisition and Scoring System for Intensive Medicine. In: Böhm, C., Khuri, S., Lhotská, L., Renda, M.E. (eds.) ITBAM 2012. LNCS, vol. 7451, pp. 1–15. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Filipe Portela, P.G., Santos, M.F., Silva, Á., Rua, F.: Intelligent and Real Time Data Acquisition and Evaluation to Determine Critical Events in Intensive Medicine. In: HCist 2012 - International Conference on Health and Social Care Information Systems and Technologies, Portugal (2012)Google Scholar
  5. 5.
    Filipe Portela, F.P., Santos, M.F.: Data Mining Predictive Models For Pervasive Intelligent Decision Support In Intensive Care Medicine. Presented at the KMIS 2012 - nternational Conference on Knowledge Management and Information Sharing, Barcelona (2012)Google Scholar
  6. 6.
    Chooprayoon, V., Fung, C.C.: TECTAM: An Approach to Study Technology Acceptance Model (TAM) in Gaining Knowledge on the Adoption and Use of E-Commerce/E-Business Technology among Small and Medium Enterprises in Thailand (2010)Google Scholar
  7. 7.
    Santos, M.F., Portela, F., Vilas-Boas, M., Machado, J., Abelha, A., Neves, J.: INTCARE - Multi-agent approach for real-time Intelligent Decision Support in Intensive Medicine. In: 3rd International Conference on Agents and Artificial Intelligence (ICAART), Rome, Italy (2011)Google Scholar
  8. 8.
    Gago, P., Santos, M.F., Silva, Á., Cortez, P., Neves, J., Gomes, L.: INTCare: a knowledge discovery based intelligent decision support system for intensive care medicine. Journal of Decision Systems (2006)Google Scholar
  9. 9.
    Portela, F., Gago, P., Santos, M.F., Silva, A., Rua, F., Machado, J., et al.: Knowledge Discovery for Pervasive and Real-Time Intelligent Decision Support in Intensive Care Medicine. Presented at the KMIS 2011- International Conference on Knowledge Management and Information Sharing, Paris, France (2011)Google Scholar
  10. 10.
    Portela, F., Santos, M., Vilas-Boas, M., Rua, F., Silva, Á., Neves, J.: Real-time Intelligent decision support in intensive medicine. Presented at the KMIS 2010- International Conference on Knowledge Management and Information Sharing, Valência, Espanha (2010)Google Scholar
  11. 11.
    Portela, F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Enabling a Pervasive approach for Intelligent Decision Support in Critical Health Care. Presented at the HCist 2011 – International Workshop on Health and Social Care Information Systems and Technologies, Algarve, Portugal (2011)Google Scholar
  12. 12.
    Fishbein, M., Ajzen, I.: Belief, attitude, intention and behaviour: An introduction to theory and research. Addison-Wesley (1975)Google Scholar
  13. 13.
    Zackiewicz, M., Salles Filho, S.: Technological Foresight–Um instrumento para política científica e tecnológica. Parcerias Estratégicas 6 (2010)Google Scholar
  14. 14.
    Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interventions. Decision Sciences 39, 273–315 (2008)CrossRefGoogle Scholar
  15. 15.
    Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 186–204 (2000)Google Scholar
  16. 16.
    Filipe Portela, M.F.S., Machado, J., Abelha, A., Neves, J., Silva, Á., Rua, F.: Intelligent Decision Support in Intensive Care –Towards Technology Acceptance. Presented at the 26th European Simulation and Modelling Conference - ESM 2012, Essen, Germany (2012)Google Scholar
  17. 17.
    Varshney, U.: Pervasive Healthcare Computing: EMR/EHR, Wireless and Health Monitoring. Springer-Verlag New York Inc. (2009)Google Scholar
  18. 18.
    Le Gall, J.R., Lemeshow, S., Saulnier, F.: A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270, 2957–2963 (1993)CrossRefGoogle Scholar
  19. 19.
    Metnitz, P.G.H., Moreno, R.P., Almeida, E., Jordan, B., Bauer, P., Campos, R.A., et al.: SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. Part 1: Objectives, methods and cohort description. Intensive Care Medicine 31, 1336–1344 (2005)CrossRefGoogle Scholar
  20. 20.
    Vincent, J., Mendonça, A., Cantraine, F., Moreno, R., Takala, J., Suter, P., et al.: Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study. Critical Care Medicine 26, 1793–1800 (1998)CrossRefGoogle Scholar
  21. 21.
    Jones, C.: Glasgow coma scale. AJN, The American Journal of Nursing 79, 1551 (1979)Google Scholar
  22. 22.
    Reis Miranda, D., de Rijk, A., Schaufeli, W.: Simplified Therapeutic Intervention Scoring System: the TISS-28 items–results from a multicenter study. Critical Care Medicine 24, 64 (1996)CrossRefGoogle Scholar
  23. 23.
    Gardner-Thorpe, J., Love, N., Wrightson, J., Walsh, S., Keeling, N.: The value of Modified Early Warning Score (MEWS) in surgical in-patients: a prospective observational study. Annals of the Royal College of Surgeons of England 88, 571 (2006)CrossRefGoogle Scholar
  24. 24.
    Johns, R.: Likert Items and Scales. Survey Question Bank: Methods Fact Sheet 1 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Filipe Portela
    • 1
  • Jorge Aguiar
    • 1
  • Manuel Filipe Santos
    • 1
  • Álvaro Silva
    • 2
  • Fernado Rua
    • 2
  1. 1.Algoritmi CenterUniversity of MinhoGuimarãesPortugal
  2. 2.Intensive Care UnitCentro Hospitalar do PortoPortoPortugal

Personalised recommendations