Temporal Visualization of a Multidimensional Network of News Clips

  • Filipe Gomes
  • José Devezas
  • Álvaro Figueira
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 206)


The exploration of large networks carries inherent challenges in the visualization of a great amount of data. We built an interactive visualization system for the purpose of exploring a large multidimensional network of news clips over time. These are clips gathered by users from web news sources and references to people or places are extracted from. In this paper, we present the system’s capabilities and user interface and discuss its advantages in terms of the browsing and extraction of knowledge from the data. These capabilities include a textual search and associated event detection, and temporal navigation allowing the user to seek a certain date and timespan.


visualization networks search event detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abello, J., van Ham, F., Krishnan, N.: Ask-graphview: A large scale graph visualization system. IEEE Transactions on Visualization and Computer Graphics 12(5), 669–676 (2006)CrossRefGoogle Scholar
  2. 2.
    Apache Software Foundation: Apache Lucene (2001), (retrieved November 9, 2012)
  3. 3.
    Apache Software Foundation: Apache Solr (2006), (retrieved November 9, 2012)
  4. 4.
    Bostock, M., Ogievetsky, V., Heer, J.: D-3: Data-Driven Documents. IEEE Transactions on Visualization and Computer Graphics 17(12), 2301–2309 (2011); IEEE Visualization Conference (Vis)/IEEE Information Visualization Conference (InfoVis), Providence, RI, October 23-28 (2011) CrossRefGoogle Scholar
  5. 5.
    Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: Graphml progress report - structural layer proposal (2002)Google Scholar
  6. 6.
    Devezas, J., Figueira, A.: Finding Language-Independent Contextual Supernodes on Coreference Networks. IAENG International Journal of Computer Science 39(2), 200–207 (2012), Google Scholar
  7. 7.
    Devezas, J., Figueira, A.: Interactive Visualization of a News Clips Network: A Journalistic Research and Knowledge Discovery Tool. In: Proceedings of the 4th International Conference on Knowledge Discovery and Information Retrieval (KDIR 2012), Barcelona, Spain (2012)Google Scholar
  8. 8.
    Erdős, P., Rényi, A.: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5, 17–61 (1960)Google Scholar
  9. 9.
    Fruchterman, T., Reingold, E.: Graph drawing bt force-directed placement. Software-Practice & Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  10. 10.
    Herman, I., Melancon, G., Marshall, M.: Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 6(1), 24–43 (2000)CrossRefGoogle Scholar
  11. 11.
    Keim, D.: Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics 8(1), 1–8 (2002)CrossRefGoogle Scholar
  12. 12.
    Rohrdantz, C., Oelke, D., Krstajic, M., Fischer, F.: Real-Time Visualization of Streaming Text Data: Tasks and Challenges. In: Workshop on Interactive Visual Text Analytics for Decision-Making at the IEEE VisWeek 2011, Providence, RI, USA (2011)Google Scholar
  13. 13.
    Shen, Z., Ma, K.L., Eliassi-Rad, T.: Visual analysis of large heterogeneous social networks by semantic and structural abstraction. IEEE Transactions on Visualization and Computer Graphics 12(6), 1427–1439 (2006), CrossRefGoogle Scholar
  14. 14.
    Wong, P.C.: Guest editor’s introduction: Visual data mining. IEEE Computer Graphics and Applications 19, 20–21 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.CRACS/INESC TEC, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations