An Outline of a Dynamic Theory of Frames

  • Ralf Naumann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7758)


In this article we present an extension to the theory of frames developed in Petersen (2007). Petersen’s theory only applies to concepts for persistent objects like trees or dogs but not to concepts for actions and events that are inherently dynamic because they describe factual changes in the world. Basic frames are defined as Kripke-models. In order to represent the dynamic dimension one needs in addition both combinations of and transformation between such models. Combinations of Kripke-models are used for temporalization (representing stages of objects and the temporal development of events) and refinement (representing the internal structure of objects). Such combinations are defined using techniques from Finger & Gabbay (1992) and Blackburn & de Rijke (1997). Transformations between Kripke-models are used to represent the factual changes brought about by events. Such transformations are defined using strategies from Dynamic Logic and Dynamic Epistemic Logic, Van Benthem et al. (2005).


dynamic frame theory Kripke models combining systems simulations dative alternation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barsalou, L.W.: Frames, concepts, and conceptual fields. In: Lehrer, A., Kittay, E.F. (eds.) Frames, Fields, and Contrasts, pp. 21–74. Erlbaum, Hillsday (1992)Google Scholar
  2. 2.
    Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22, 577–660 (1999)Google Scholar
  3. 3.
    Beavers, J.: An aspectual analysis of ditransitive verbs of caused possession in English. Journal of Semantics 28, 1–54 (2011)CrossRefGoogle Scholar
  4. 4.
    Blackburn, P.: Modal Logic and Attribute Value Structures. In: de Rijke, M. (ed.) Diamonds and Defaults, pp. 19–65. Kluwer Academic Publishers (1993)Google Scholar
  5. 5.
    Blackburn, P.: Structures, Languages and Translations: the Structural Approach to Feature Logic. In: Rupp, C., Rosner, M., Johnson, R. (eds.) Constraints, Language and Computation, pp. 1–27. Academic Press (1994)Google Scholar
  6. 6.
    Blackburn, P., de Rijke, M.: Zooming in, zooming out. Journal of Logic, Language, and Information 6, 5–31 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Carpenter, B.: The logic of typed feature structures. Cambridge UP, Cambridge (1992)zbMATHCrossRefGoogle Scholar
  8. 8.
    Fillmore, C.J.: Frame semantics. In: Linguistics in the Morning Calm, pp. 111–137. Hanshin Publishing Co., The Linguistic Society of Korea, Seoul (1982)Google Scholar
  9. 9.
    Finger, M., Gabbay, D.: Adding a temporal dimension to a logic system. J. of Logic Language and Information 1, 203–233 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic, Cambridge. MIT Press, Cambridge (2000)Google Scholar
  11. 11.
    Kallmeyer, L., Osswald, R.: A frame-based semantics of the dative alternation in lexicalized tree adjoining grammars, Paper Presented at Empirical Issues in Syntax and Semantics 9, Paris (2012)Google Scholar
  12. 12.
    Levin, B., Rappaport-Hovav, M.: Argument realization. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  13. 13.
    Löbner, S.: General introduction. In: Proposal for the CRC 991. Institute for Language and Information, University of Düsseldorf (2011)Google Scholar
  14. 14.
    Moens, M., Steedman, M.: Temporal ontology and temporal reference. Computational Linguistics 14(2), 15–28 (1988)Google Scholar
  15. 15.
    Naumann, R.: Aspects of changes: a dynamic event semantics. Journal of Semantics 18, 27–81 (2001)CrossRefGoogle Scholar
  16. 16.
    Naumann, R.: Relating ERP-Effects to Theories of Belief Update and Combining Systems. In: Aloni, M., Kimmelman, V., Roelofsen, F., Sassoon, G.W., Schulz, K., Westera, M., et al. (eds.) Logic, Language and Meaning. LNCS, vol. 7218, pp. 160–169. Springer, Heidelberg (2012A)CrossRefGoogle Scholar
  17. 17.
    Naumann, R.: Dynamics in the brain and dynamic frame theory for action verbs. To appear in: Proceedings of SMCLC (2012b)Google Scholar
  18. 18.
    Naumann, R.: A dynamic update model of sentence processing, ms, University of Düsseldorf (2012c)Google Scholar
  19. 19.
    Osswald, R., Van Valin, R.: FrameNet, frame structure, and the syntax-semantics interface. To appear in: Proceedings CTF (2012)Google Scholar
  20. 20.
    Petersen, W.: Decomposing concepts with frames. In: Skilters, J., et al. (eds.) Complex Cognition and Qualitative Science, The Baltic International Yearbook of Cognition, Logic and Communication, vol. 2, pp. 151–170. University of Latvia (2007)Google Scholar
  21. 21.
    Petersen, W., Osswald, T.: A formal interpretation of concept types and type shifts. In: Kosecki, K., Badio, J. (eds.) Cognitive Processes in Language. Lodz Studies in Language, vol. 25, pp. 183–191. Peter Lang, Frankfurt (2012)Google Scholar
  22. 22.
    Pinon, C.: Achievements in an event semantics. In: Lawson, A. (ed.) Proceedings of Semantics and Linguistic Theory VII, pp. 276–293. CLC Publications, Cornell University, Ithaca, NY (1997)Google Scholar
  23. 23.
    Van Benthem, J., et al.: Logics of communication and change. Information and Computation 204, 1620–1662 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Wiggins, D.: Sameness and substance. Harvard UP, Harvard (1980)Google Scholar
  25. 25.
    Zwaan, R.A., Stanfield, R.A.: The effect of implied orientation derived from verbal context on picture recognition. Psychological Science 12(2), 153–156 (2001)CrossRefGoogle Scholar
  26. 26.
    Zwaan, R.A., et al.: Language comprehenders mentally represent the shape of objects. Psychological Science 13(2), 168–171 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ralf Naumann
    • 1
  1. 1.Institut für Sprache und InformationUniversität DüsseldorfGermany

Personalised recommendations