Skip to main content

Coalgebraic Predicate Logic: Equipollence Results and Proof Theory

  • Conference paper
Logic, Language, and Computation (TbiLLC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7758))

Included in the following conference series:

Abstract

The recently introduced Coalgebraic Predicate Logic (CPL) provides a general first-order syntax together with extra modal-like operators that are interpreted in a coalgebraic setting. The universality of the coalgebraic approach allows us to instantiate the framework to a wide variety of situations, including probabilistic logic, coalition logic or the logic of neighbourhood frames. The last case generalises a logical setup proposed by C.C. Chang in early 1970’s. We provide further evidence of the naturality of this framework. We identify syntactically the fragments of CPL corresponding to extended modal formalisms and show that the full CPL is equipollent with coalgebraic hybrid logic with the downarrow binder and the universal modality. Furthermore, we initiate the study of structural proof theory for CPL by providing a sequent calculus and a cut-elimination result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Elsevier (2007)

    Google Scholar 

  2. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic Journal of the IGPL 8(3) (2000)

    Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)

    Google Scholar 

  4. Blackburn, P., ten Cate, B.: Pure extensions, proof rules, and hybrid axiomatics. Studia Logica 84(2), 277–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. ten Cate, B.: Model theory for extended modal languages. PhD thesis, University of Amsterdam, ILLC Dissertation Series DS-2005-01 (2005)

    Google Scholar 

  6. ten Cate, B.D., Franceschet, M.: On the Complexity of Hybrid Logics with Binders. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 339–354. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Chang, C.: Modal model theory. In: Mathias, A., Rogers, H. (eds.) Cambridge Summer School in Mathematical Logic. Lecture Notes in Mathematics, vol. 337, pp. 599–617. Springer, Heidelberg (1973)

    Chapter  Google Scholar 

  8. Hvid Hansen, H., Kupke, C., Pacuit, E.: Neighbourhood structures: Bisimilarity and basic model theory. Log. Methods Comput. Sci. 5 (2009)

    Google Scholar 

  9. Litak, T., Pattinson, D., Sano, K., Schröder, L.: Coalgebraic Predicate Logic. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) Automata, Languages, and Programming, Part II. LNCS, vol. 7392, pp. 299–311. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Negri, S., Von Plato, J.: Structural Proof Theory. Cambridge University Press (2001)

    Google Scholar 

  11. Pacuit, E., Salame, S.: Majority logic. In: Dubois, D., Welty, C., Williams, M.-A. (eds.) Proc. KR 2004, pp. 598–605. AAAI Press (2004)

    Google Scholar 

  12. Pattinson, D., Schröder, L.: Cut elimination in coalgebraic logics. Information and Computation 208, 1447–1468 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log. Algebr. Prog. 73, 97–110 (2007)

    Article  MATH  Google Scholar 

  14. Schröder, L., Pattinson, D.: Coalgebraic Correspondence Theory. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 328–342. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Schröder, L., Pattinson, D.: Named models in coalgebraic hybrid logic. In: Marion, J.-Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 645–656. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  16. Sgro, J.: The interior operator logic and product topologies. Trans. AMS 258(1), 99–112 (1980)

    Google Scholar 

  17. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Litak, T., Pattinson, D., Sano, K. (2013). Coalgebraic Predicate Logic: Equipollence Results and Proof Theory. In: Bezhanishvili, G., Löbner, S., Marra, V., Richter, F. (eds) Logic, Language, and Computation. TbiLLC 2011. Lecture Notes in Computer Science, vol 7758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36976-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36976-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36975-9

  • Online ISBN: 978-3-642-36976-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics