Skip to main content

Model Checking for Modal Intuitionistic Dependence Logic

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7758)

Abstract

Modal intuitionistic dependence logic (\(\mathcal MIDL \)) incorporates the notion of “dependence” between propositions into the usual modal logic and has connectives which correspond to intuitionistic connectives in a certain sense. It is the modal version of a variant of first-order dependence logic (Väänänen 2007) considered by Abramsky and Väänänen (2009) basing on Hodges’ team semantics (1997).

In this paper, we study the computational complexity of the model checking problem for \(\mathcal MIDL\) and its fragments built by restricting the operators allowed in the logics. In particular, we show that the model checking problem for \(\mathcal MIDL\) in general is PSPACE-complete and that for propositional intuitionistic dependence logic is coNP-complete.

ACMSubject Classifiers

  • F.2.2 Complexity of proof procedures
  • F.4.1 Modal logic
  • D.2.4 Model checking

Keywords

  • dependence logic
  • intuitionistic logic
  • modal logic
  • model checking
  • computational complexity

This work was supported by DAAD grant 50740539 and by grant 138163 of the Academy of Finland. It was also partially supported by the EUROCORES LogICCC LINT programme and the NTH Focused Research School for IT Ecosystems.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36976-6_15
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-36976-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S., Väänänen, J.: From IF to BI. Synthese 167(2), 207–230 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–263 (1986)

    MATH  CrossRef  Google Scholar 

  3. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Ciardelli, I., Roelofsen, F.: Inquisitive logic. Journal of Philosophical Logic 40(1), 55–94 (2011)

    MathSciNet  CrossRef  Google Scholar 

  5. Ebbing, J., Lohmann, P.: Complexity of model checking for modal dependence logic, CoRR abs/1104.1034v1 (2011)

    Google Scholar 

  6. Enderton, H.: Finite partially-ordered quantifiers. Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik (16), 393–397 (1970)

    Google Scholar 

  7. Hemaspaandra, E.: The complexity of poor man’s logic, CoRR cs.LO/9911014v2 (2005)

    Google Scholar 

  8. Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods, Proceedings Symposium Foundations of Mathematics, pp. 167–183. Pergamon, Warsaw (1961)

    Google Scholar 

  9. Hodges, W.: Compositional semantics for a langauge of imperfect information. Logic Journal of the IGPL 5, 539–563 (1997)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Hodges, W.: Some Strange Quantifiers. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 51–65. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  11. Hintikka, J., Sandu, G.: Informational independence as a semantical phenomenon. In: Fenstad, J.E., Frolov, I.T., Hilpinen, R. (eds.) Logic, Methodology and Philosophy of Science, vol. 8, pp. 571–589. Elsevier, Amsterdam (1989)

    Google Scholar 

  12. Hintikka, J., Sandu, G.: Game-theoretical semantics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language. Elsevier (1996)

    Google Scholar 

  13. Hemaspaandra, E., Schnoor, H., Schnoor, I.: Generalized modal satisfiability. J. Comput. Syst. Sci. 76(7), 561–578 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  14. Lewis, H.: Satisfiability problems for propositional calculi. Mathematical Systems Theory 13, 45–53 (1979)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Lohmann, P., Vollmer, H.: Complexity Results for Modal Dependence Logic. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 411–425. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  16. Maksimova, L.: On maximal intermediate logics with the disjunction property. Studia Logica 45(1), 69–75 (1986)

    MathSciNet  MATH  CrossRef  Google Scholar 

  17. Parikh, R., Väänänen, J.: Finite information logic. Annals of Pure and Applied Logic 134(1), 83–93 (2005), Papers Presented at the 9th Workshop on Logic, Language, Information and Computation (WoLLIC 2002)

    Google Scholar 

  18. Servi, G.F.: Semantics for a class of intuitionistic modal calculi. In: Dalla Chiara, M.L. (ed.) Italian Studies in the Philosophy of Science, pp. 59–72. D. Reidel Publishing Company (1981)

    Google Scholar 

  19. Sevenster, M.: Model-theoretic and computational properties of modal dependence logic. Journal of Logic and Computation 19(6), 1157–1173 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  20. Väänänen, J.: Dependence logic: A new approach to independence friendly logic. London Mathematical Society Student Texts, vol. 70. Cambridge University Press (2007)

    Google Scholar 

  21. Väänänen, J.: Modal dependence logic. In: Apt, K.R., van Rooij, R. (eds.) New Perspectives on Games and Interaction. Texts in Logic and Games, vol. 4, pp. 237–254. Amsterdam University Press (2008)

    Google Scholar 

  22. Walkoe, W.: Finite partially-ordered quantification. Journal of Symbolic Logic (35), 535–555 (1970)

    Google Scholar 

  23. Yang, F.: Expressing second-order sentences in intuitionistic dependence logic. In: Dependence and Independence in Logic Proceedings, pp. 118–132 (2010)

    Google Scholar 

  24. Yang, F.: Modal intuitionistic dependence logic (2012) (manuscript)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ebbing, J., Lohmann, P., Yang, F. (2013). Model Checking for Modal Intuitionistic Dependence Logic. In: Bezhanishvili, G., Löbner, S., Marra, V., Richter, F. (eds) Logic, Language, and Computation. TbiLLC 2011. Lecture Notes in Computer Science, vol 7758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36976-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36976-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36975-9

  • Online ISBN: 978-3-642-36976-6

  • eBook Packages: Computer ScienceComputer Science (R0)