Decidability for Justification Logics Revisited

  • Samuel Bucheli
  • Roman Kuznets
  • Thomas Studer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7758)


Justification logics are propositional modal-like logics that instead of statements A is known include statements of the form A is known for reason t where the term t can represent an informal justification for A or a formal proof of A. In our present work, we introduce model-theoretic tools, namely: filtrations and a certain form of generated submodels, in the context of justification logic in order to obtain decidability results. Apart from reproving already known results in a uniform way, we also prove new results. In particular, we use our submodel construction to establish decidability for a justification logic with common knowledge for which so far no decidability proof was available.


Justification logic decidability filtration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artemov, S.N.: Operational modal logic. Tech. Rep. MSI 95–29, Cornell University (December 1995)Google Scholar
  2. 2.
    Artemov, S.N.: Explicit provability and constructive semantics. Bulletin of Symbolic Logic 7(1), 1–36 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Artemov, S.N.: The logic of justification. The Review of Symbolic Logic 1(4), 477–513 (2008)zbMATHCrossRefGoogle Scholar
  4. 4.
    Artemov, S.N., Fitting, M.: Justification logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Fall 2011 edn. (2011),
  5. 5.
    Artemov, S.N., Kuznets, R.: Logical omniscience as a computational complexity problem. In: Heifetz, A. (ed.) Proceedings of the Twelfth Conference on Theoretical Aspects of Rationality and Knowledge, TARK 2009, July 6-8, pp. 14–23. ACM, Stanford University (2009)Google Scholar
  6. 6.
    Blackburn, P., Rijke, M., Venema, Y.: Modal logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press (2002)Google Scholar
  7. 7.
    Brünnler, K., Goetschi, R., Kuznets, R.: A syntactic realization theorem for justification logics. In: Beklemishev, L.D., Goranko, V., Shehtman, V. (eds.) Advances in Modal Logic, vol. 8, pp. 39–58. College Publications (2010)Google Scholar
  8. 8.
    Bucheli, S., Kuznets, R., Renne, B., Sack, J., Studer, T.: Justified belief change. In: Arrazola, X., Ponte, M. (eds.) LogKCA 2010, Proceedings of the Second ILCLI International Workshop on Logic and Philosophy of Knowledge, Communication and Action, pp. 135–155. University of the Basque Country Press (2010)Google Scholar
  9. 9.
    Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. Journal of Applied Non-Classical Logics 21(1), 35–60 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bucheli, S., Kuznets, R., Studer, T.: Partial Realization in Dynamic Justification Logic. In: Beklemishev, L.D., de Queiroz, R. (eds.) WoLLIC 2011. LNCS, vol. 6642, pp. 35–51. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied Logic 132(1), 1–25 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kuznets, R.: On the Complexity of Explicit Modal Logics. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 371–383. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Kuznets, R.: Complexity Issues in Justification Logic. Ph.D. thesis, CUNY Graduate Center (May 2008),
  14. 14.
    Kuznets, R.: Self-referential justifications in epistemic logic. Theory of Computing Systems 46(4), 636–661 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lemmon, E.J., Scott, D.S.: An Introduction to Modal Logic. B. Blackwell, Oxford (1977)zbMATHGoogle Scholar
  16. 16.
    Mkrtychev, A.: Models for the Logic of Proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Pacuit, E.: A note on some explicit modal logics. In: Proceedings of the 5th Panhellenic Logic Symposium, July 25-28, pp. 117–125. University of Athens, Athens (2005)Google Scholar
  18. 18.
    Post, E.L.: Recursively enumerable sets of positive integers and their decision problems. Bull. Am. Math. Soc. 50, 284–316 (1944)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Segerberg, K.: An Essay in Classical Modal Logic. Uppsala,Filosofiska Föreningen Och Filosofiska Institutionen Vid Uppsala Universitet (1971)Google Scholar
  20. 20.
    Studer, T.: Decidability for some justification logics with negative introspection. Journal of Symbolic Logic (to appear),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Samuel Bucheli
    • 1
  • Roman Kuznets
    • 1
  • Thomas Studer
    • 1
  1. 1.Institut für Informatik und angewandte MathematikUniversität BernSwitzerland

Personalised recommendations