Serelex: Search and Visualization of Semantically Related Words

  • Alexander Panchenko
  • Pavel Romanov
  • Olga Morozova
  • Hubert Naets
  • Andrey Philippovich
  • Alexey Romanov
  • Cédrick Fairon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7814)

Abstract

We present Serelex, a system that provides, given a query in English, a list of semantically related words. The terms are ranked according to an original semantic similarity measure learnt from a huge corpus. The system performs comparably to dictionary-based baselines, but does not require any semantic resource such as WordNet. Our study shows that users are completely satisfied with 70% of the query results.

Keywords

semantic similarity measure visualization extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Panchenko, A., Morozova, O., Naets, H.: A semantic similarity measure based on lexico-syntactic patterns. In: Proceedings of KONVENS 2012, pp. 174–178 (2012)Google Scholar
  2. 2.
    Baroni, M., Bernardini, S., Ferraresi, A., Zanchetta, E.: The wacky wide web: A collection of very large linguistically processed web-crawled corpora. LREC 43(3), 209–226 (2009)Google Scholar
  3. 3.
    Barnes, J., Hut, P.: A hierarchical 0 (n log iv) force-calculation algorithm. Nature 324, 4 (1986)Google Scholar
  4. 4.
    Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: ACL 1994, pp. 133–138 (1994)Google Scholar
  5. 5.
    Leacock, C., Chodorow, M.: Combining Local Context and WordNet Similarity for Word Sense Identification. In: WordNet, pp. 265–283 (1998)Google Scholar
  6. 6.
    Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In: IJCAI, vol. 1, pp. 448–453 (1995)Google Scholar
  7. 7.
    Banerjee, S., Pedersen, T.: Extended gloss overlaps as a measure of semantic relatedness. In: IJCAI, vol. 18, pp. 805–810 (2003)Google Scholar
  8. 8.
    Patwardhan, S., Pedersen, T.: Using WordNet-based context vectors to estimate the semantic relatedness of concepts. In: Making Sense of Sense: Bringing Psycholinguistics and Computational Linguistics Together, pp. 1–12 (2006)Google Scholar
  9. 9.
    Zesch, T., Müller, C., Gurevych, I.: Extracting lexical semantic knowledge from wikipedia and wiktionary. In: LREC 2008, pp. 1646–1652 (2008)Google Scholar
  10. 10.
    Van de Cruys, T.: Mining for Meaning: The Extraction of Lexico-Semantic Knowledge from Text. PhD thesis, University of Groningen (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Panchenko
    • 1
    • 2
  • Pavel Romanov
    • 2
  • Olga Morozova
    • 1
  • Hubert Naets
    • 1
  • Andrey Philippovich
    • 2
  • Alexey Romanov
    • 2
  • Cédrick Fairon
    • 1
  1. 1.Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations