Advertisement

How Tagging Pragmatics Influence Tag Sense Discovery in Social Annotation Systems

  • Thomas Niebler
  • Philipp Singer
  • Dominik Benz
  • Christian Körner
  • Markus Strohmaier
  • Andreas Hotho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7814)

Abstract

The presence of emergent semantics in social annotation systems has been reported in numerous studies. Two important problems in this context are the induction of semantic relations among tags and the discovery of different senses of a given tag. While a number of approaches for discovering tag senses exist, little is known about which factors influence the discovery process. In this paper, we analyze the influence of user pragmatic factors. We divide taggers into different pragmatic distinctions. Based on these distinctions, we identify subsets of users whose annotations allow for a more precise and complete discovery of tag senses. Our results provide evidence for a link between tagging pragmatics and semantics and provide another argument for including pragmatic factors in semantic extraction methods. Our work is relevant for improving search, retrieval and browsing in social annotation systems, as well as for optimizing ontology learning algorithms based on tagging data.

Keywords

User Behavior Word Sense Pragmatic Factor Social Annotation Sense Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zubiaga, A., Körner, C., Strohmaier, M.: Tags vs shelves: from social tagging to social classification. In: Proceedings of the 22nd ACM Conference on Hypertext and Hypermedia, HT 2011, pp. 93–102. ACM, New York (2011)CrossRefGoogle Scholar
  2. 2.
    Körner, C., Benz, D., Strohmaier, M., Hotho, A., Stumme, G.: Stop thinking, start tagging - tag semantics emerge from collaborative verbosity. In: Proceedings of the 19th International World Wide Web Conference, Raleigh, NC, USA. ACM (2010)Google Scholar
  3. 3.
    Golder, S.A., Huberman, B.A.: The structure of collaborative tagging systems. Journal of Information Science 32, 198–208 (2006)CrossRefGoogle Scholar
  4. 4.
    Garcia-Silva, A., Szomszor, M., Alani, H., Corcho, O.: Preliminary results in tag disambiguation using dbpedia. In: Proceedings of the 1st International Workshop on Collective Knowledge Capturing and Representation, CKCaR 2009 (2009)Google Scholar
  5. 5.
    Au Yeung, C.M., Gibbins, N., Shadbolt, N.: Understanding the semantics of ambiguous tags in folksonomies. In: Proceedings of the International Workshop on Emergent Semantics and Ontology Evolution, ESOE 2007 (2007)Google Scholar
  6. 6.
    Si, X., Sun, M.: Disambiguating Tags in Blogs. In: Matoušek, V., Mautner, P. (eds.) TSD 2009. LNCS, vol. 5729, pp. 139–146. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Dorow, B., Widdows, D.: Discovering corpus-specific word senses. In: Proceedings of the 10th Conference on European Chapter of the Association for Computational Linguistics, EACL 2003, vol. 2, pp. 79–82. Association for Computational Linguistics, Morristown (2003)Google Scholar
  8. 8.
    Pantel, P., Lin, D.: Discovering word senses from text. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, pp. 613–619 (2002)Google Scholar
  9. 9.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folksonomies: Search and Ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Au Yeung, C.M., Gibbins, N., Shadbolt, N.: Contextualising tags in collaborative tagging systems. In: Proceedings of the 20th ACM Conference on Hypertext and Hypermedia (HT2009), pp. 251–260. ACM, New York (2009)CrossRefGoogle Scholar
  11. 11.
    Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic Grounding of Tag Relatedness in Social Bookmarking Systems. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 615–631. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Rapp, R.: Word sense discovery based on sense descriptor dissimilarity. In: Proceedings of the 9th Machine Translation Summit, pp. 315–322 (2003)Google Scholar
  13. 13.
    Benz, D., Hotho, A.: Semantics made by you and me: Self-emerging ontologies can capture the diversity of shared knowledge. In: Proceedings of the 2nd Web Science Conference (WebSci 2010), Raleigh, NC, USA (2010)Google Scholar
  14. 14.
    Ward Jr., J.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–244 (1963)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Strohmaier, M., Körner, C., Kern, R.: Why do users tag? detecting users motivation for tagging in social tagging systems. In: International AAAI Conference on Weblogs and Social Media (2010)Google Scholar
  16. 16.
    Körner, C., Kern, R., Grahsl, H.P., Strohmaier, M.: Of categorizers and describers: An evaluation of quantitative measures for tagging motivation. In: 21st ACM SIGWEB Conference on Hypertext and Hypermedia, Toronto, Canada. ACM (2010)Google Scholar
  17. 17.
    Stirling, A.: A general framework for analysing diversity in science, technology and society. SPRU Electronic Working Paper Series 156, University of Sussex, SPRU - Science and Technology Policy Research (2007)Google Scholar
  18. 18.
    Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Zhou, M., Bao, S., Wu, X., Yu, Y.: An Unsupervised Model for Exploring Hierarchical Semantics from Social Annotations. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 680–693. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Angeletou, S.: Semantic Enrichment of Folksonomy Tagspaces. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 889–894. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Benz, D., Körner, C., Hotho, A., Stumme, G., Strohmaier, M.: One Tag to Bind Them All: Measuring Term Abstractness in Social Metadata. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 360–374. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  23. 23.
    Angeletou, S., Sabou, M., Motta, E.: Semantically enriching folksonomies with flor. In: Proceedings of the CISWeb Workshop (2008)Google Scholar
  24. 24.
    Lee, K., Kim, H., Shin, H., Kim, H.J.: Tag sense disambiguation for clarifying the vocabulary of social tags. In: CSE, pp. 729–734. IEEE Computer Society (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Niebler
    • 1
  • Philipp Singer
    • 2
  • Dominik Benz
    • 3
  • Christian Körner
    • 2
  • Markus Strohmaier
    • 2
  • Andreas Hotho
    • 1
  1. 1.Data Mining and Information Retrieval GroupUniversity of WürzburgWürzburgGermany
  2. 2.Knowledge Management InstituteGraz University of TechnologyGrazAustria
  3. 3.Knowledge & Data Engineering GroupUniversity of KasselKasselGermany

Personalised recommendations