Understanding Relevance: An fMRI Study

  • Yashar Moshfeghi
  • Luisa R. Pinto
  • Frank E. Pollick
  • Joemon M. Jose
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7814)


Relevance is one of the key concepts in Information Retrieval (IR). A huge body of research exists that attempts to understand this concept so as to operationalize it for IR systems. Despite advances in the past few decades, answering the question “How does relevance happen?” is still a big challenge. In this paper, we investigate the connection between relevance and brain activity. Using functional Magnetic Resonance Imaging (fMRI), we measured the brain activity of eighteen participants while they performed four topical relevance assessment tasks on relevant and non-relevant images. The results of this experiment revealed three brain regions in the frontal, parietal and temporal cortex where brain activity differed between processing relevant and non-relevant documents. This is an important step in unravelling the nature of relevance and therefore better utilising it for effective retrieval.


fMRI Study Inferior Parietal Lobe Visual Working Memory Information Retrieval System Superior Frontal Gyrus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saracevic, T.: Relevance: A review of the literature and a framework for thinking on the notion in information science. Part II: nature and manifestations of relevance. JASIST 58(13), 1915–1933 (2007)CrossRefGoogle Scholar
  2. 2.
    Mizzaro, S.: Relevance: The whole history. JASIS 48(9), 810–832 (1997)CrossRefGoogle Scholar
  3. 3.
    Koenemann, J., Belkin, N.J.: A case for interaction: a study of interactive information retrieval behavior and effectiveness. In: SIGCHI, pp. 205–212. ACM (1996)Google Scholar
  4. 4.
    White, R., Kelly, D.: A study on the effects of personalization and task information on implicit feedback performance. In: CIKM, pp. 297–306 (2006)Google Scholar
  5. 5.
    Arapakis, I., Athanasakos, K., Jose, J.M.: A comparison of general vs personalised affective models for the prediction of topical relevance. In: SIGIR, pp. 371–378 (2010)Google Scholar
  6. 6.
    White, R.W.: Implicit Feedback for Interactive Information Retrieval. PhD thesis, University of Glasgow (2004)Google Scholar
  7. 7.
    Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: SIGIR, pp. 154–161 (2005)Google Scholar
  8. 8.
    Kelly, D., Belkin, N.J.: Display time as implicit feedback: understanding task effects. In: SIGIR, pp. 377–384. ACM (2004)Google Scholar
  9. 9.
    Nichols, D.M.: Implicit rating and filtering. In: Proceedings of the Fifth DELOS Workshop on Filtering and Collaborative Filtering, pp. 31–36 (1997)Google Scholar
  10. 10.
    Kelly, D., Belkin, N.: A user modeling system for personalized interaction and tailored retrieval in interactive ir. ASIST 39(1), 316–325 (2005)Google Scholar
  11. 11.
    Arapakis, I., Moshfeghi, Y., Joho, H., Ren, R., Hannah, D., Jose, J.M.: Enriching user profiling with affective features for the improvement of a multimodal recommender system. In: CIVR (2009)Google Scholar
  12. 12.
    Lorigo, L., Haridasan, M., Brynjarsdóttir, H., Xia, L., Joachims, T., Gay, G., Granka, L., Pellacini, F., Pan, B.: Eye tracking and online search: Lessons learned and challenges ahead. JASIST 59(7), 1041–1052 (2008)CrossRefGoogle Scholar
  13. 13.
    Arapakis, I., Konstas, I., Jose, J.M.: Using facial expressions and peripheral physiological signals as implicit indicators of topical relevance. In: MM, pp. 461–470 (2009)Google Scholar
  14. 14.
    Ingwersen, P., Järvelin, K.: The turn: Integration of information seeking and retrieval in context, vol. 18. Springer (2005)Google Scholar
  15. 15.
    Ogawa, S., Lee, T., Kay, A., Tank, D.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87(24), 9868–9872 (1990)CrossRefGoogle Scholar
  16. 16.
    Friston, K., Buechel, C., Fink, G., Morris, J., Rolls, E., Dolan, R.: Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6, 218–229 (2007)CrossRefGoogle Scholar
  17. 17.
    Robinson, D., Rugg, M.: Latencies of visually responsive neurons in various regions of the rhesus monkey brain and their relation to human visual responses. Biological Psychology 26(1), 111–116 (1988)CrossRefGoogle Scholar
  18. 18.
    Huettel, S., Song, A., McCarthy, G.: Functional Magnetic Resonance Imaging. Sinauer Associates (2009)Google Scholar
  19. 19.
    Heeger, D., Ress, D., et al.: What does fmri tell us about neuronal activity? Nature Reviews Neuroscience 3(2), 142–151 (2002)CrossRefGoogle Scholar
  20. 20.
    Bandettini, P.: Twenty years of functional mri: The science and the stories. NeuroImage (2012)Google Scholar
  21. 21.
    Logothetis, N.: What we can do and what we cannot do with fmri. Nature 453(7197), 869–878 (2008)CrossRefGoogle Scholar
  22. 22.
    Goebel, R.: BrainVoyager QX, Vers.2.1, Brain Innovation B.V., Maastricht, NetherlandsGoogle Scholar
  23. 23.
    Talairach, J., Tournoux, P.: Co-planar stereotaxic atlas of the human brain, vol. 147. Thieme, New York (1988)Google Scholar
  24. 24.
    Goebel, R., Esposito, F., Formisano, E.: Analysis of functional image analysis contest (fiac) data with brainvoyager qx: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Human Brain Mapping 27(5), 392–401 (2006)CrossRefGoogle Scholar
  25. 25.
    Forman, S., Cohen, J., Fitzgerald, M., Eddy, W., Mintun, M., Noll, D.: Improved assessment of significant activation in functional magnetic resonance imaging (fmri): use of a cluster-size threshold. MRM 33(5), 636–647 (1995)CrossRefGoogle Scholar
  26. 26.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.: Principles of Neural Science, 5th edn. McGraw-Hill (2012)Google Scholar
  27. 27.
    Peelen, M., Fei-Fei, L., Kastner, S.: Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature 460(7251), 94–97 (2009)CrossRefGoogle Scholar
  28. 28.
    Baddeley, A., Hitch, G., et al.: Working memory. The Psychology of Learning and Motivation 8, 47–89 (1974)CrossRefGoogle Scholar
  29. 29.
    Baddeley, A.: The episodic buffer: a new component of working memory? Trends in Cognitive Sciences 4(11), 417–423 (2000)CrossRefGoogle Scholar
  30. 30.
    Mildner, V.: The Cognitive Neuroscience of Human Communication. Taylor and Francis (2008)Google Scholar
  31. 31.
    Christophel, T., Hebart, M., Haynes, J.: Decoding the contents of visual short-term memory from human visual and parietal cortex. The Journal of Neuroscience 32(38), 12983–12989 (2012)CrossRefGoogle Scholar
  32. 32.
    Linden, D., Oosterhof, N., Klein, C., Downing, P.: Mapping brain activation and information during category-specific visual working memory. Journal of Neurophysiology 107(2), 628–639 (2012)CrossRefGoogle Scholar
  33. 33.
    Corbetta, M., Shulman, G., et al.: Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3(3), 215–229 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yashar Moshfeghi
    • 1
  • Luisa R. Pinto
    • 1
  • Frank E. Pollick
    • 2
  • Joemon M. Jose
    • 1
  1. 1.School of Computing ScienceUniversity of GlasgowGlasgowUK
  2. 2.School of PsychologyUniversity of GlasgowGlasgowUK

Personalised recommendations