Skip to main content

From Image to Personalized Cardiac Simulation: Encoding Anatomical Structures into a Model-Based Segmentation Framework

  • Conference paper
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2012)

Abstract

Whole organ scale patient specific biophysical simulations contribute to the understanding, diagnosis and treatment of complex diseases such as cardiac arrhythmia. However, many individual steps are required to bridge the gap from an anatomical scan to a personalized biophysical model. In biophysical modeling, differential equations are solved on spatial domains represented by volumetric meshes of high resolution and in model-based segmentation, surface or volume meshes represent the patient’s geometry. We simplify the personalization process by representing the simulation mesh and additional relevant structures relative to the segmentation mesh. Using a surface correspondence preserving model-based segmentation algorithm, we facilitate the integration of anatomical information into biophysical models avoiding a complex processing pipeline. In a simulation study, we observe surface correspondence of up to 1.6 mm accuracy for the four heart chambers. We compare isotropic and anisotropic atrial excitation propagation in a personalized simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burdumy, M., Luik, A., Neher, P., Hanna, R., Krueger, M.W., Schilling, C., Barschdorf, H., Lorenz, C., Seemann, G., Schmitt, C., Dössel, O., Weber, F.M.: Comparing measured and simulated wave directions in the left atrium - a workflow for model personalization and validation. Biomedical Engineering (2012)

    Google Scholar 

  2. Camara, O., Pashaei, A., Sebastian, R., Frangi, A.F.: Personalization of Fast Conduction Purkinje System in Eikonal-Based Electrophysiological Models with Optical Mapping Data. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM-CESC 2010. LNCS, vol. 6364, pp. 281–290. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Christie, G.R., Nielsen, P.M., Blackett, S.A., Bradley, C.P., Hunter, P.J.: FieldML: concepts and implementation. Philosophical Transactions of the Royal Society A 367(1895), 1869–1884 (2009)

    Article  Google Scholar 

  4. Dux-Santoy, L., Sebastian, R., Felix-Rodriguez, J., Ferrero, J.M., Saiz, J.: Interaction of specialized cardiac conduction system with antiarrhythmic drugs: A simulation study. IEEE Transactions on Biomedical E 58(12), 3475–3478 (2011)

    Article  Google Scholar 

  5. Ecabert, O., Peters, J., Schramm, H., Lorenz, C., von Berg, J., Walker, M.J., Vembar, M., Olszewski, M.E., Subramanyan, K., Lavi, G., Weese, J.: Automatic model-based segmentation of the heart in CT images. IEEE Transactions on Medical Imaging 27(9), 1189–1201 (2008)

    Article  Google Scholar 

  6. Fernandez, J.W., Mithraratne, P., Thrupp, S.F., Tawhai, M.H., Hunter, P.J.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomechanics and Modeling in Mechanobiology 2, 139–155 (2004)

    Article  Google Scholar 

  7. Hoogendoorn, C., Pashaei, A., Sebastian, R., Sukno, F.M., Cámara, O., Frangi, A.F.: Sensitivity Analysis of Mesh Warping and Subsampling Strategies for Generating Large Scale Electrophysiological Simulation Data. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 418–426. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Kaus, M.R., Pekar, V., Lorenz, C., Truyen, R., Lobregt, S., Weese, J.: Automated 3-d PDM construction from segmented images using deformable models. IEEE Transactions on Medical Imaging 22(8), 1005–1013 (2003)

    Article  Google Scholar 

  9. Krueger, M.W., Schmidt, V., Tobón, C., Weber, F.M., Lorenz, C., Keller, D.U.J., Barschdorf, H., Burdumy, M., Neher, P., Plank, G., Rhode, K., Seemann, G., Sanchez-Quintana, D., Saiz, J., Razavi, R., Dössel, O.: Modeling Atrial Fiber Orientation in Patient-Specific Geometries: A Semi-automatic Rule-Based Approach. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 223–232. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Lamata, P., Niederer, S., Nordsletten, D., Barber, D.C., Roy, I., Hose, D.R., Smith, N.: An accurate, fast and robust method to generate patient-specific cubic Hermite meshes. Medical Image Analysis 15(6), 801–813 (2011)

    Article  Google Scholar 

  11. Neher, P., Barschdorf, H., Dries, S., Weber, F.M., Krueger, M.W., Dössel, O., Lorenz, C.: Automatic Segmentation of Cardiac CTs - Personalized Atrial Models Augmented with Electrophysiological Structures. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 80–87. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Peyrat, J.M., Sermesant, M., Pennec, X., Delingette, H., Xu, C., McVeigh, E.R., Ayache, N.: A computational framework for the statistical analysis of cardiac diffusion tensors: Application to a small database of canine hearts. IEEE Transactions on Medical Imaging 26(10), 1–15 (2007)

    Article  Google Scholar 

  13. Sakamoto, S., Nitta, T., Ishii, Y., Miyagi, Y., Ohmori, H., Shimizu, K.: Interatrial electrical connections: The precise location and preferential conduction. Journal of Cardiovascular Electrophysiology 16(10), 1077–1086 (2005)

    Article  Google Scholar 

  14. Schulte, R.F., Sands, G.B., Sachse, F.B., Dössel, O., Pullan, A.J.: Creation of a human heart model and its customisation using ultrasound images. Biomedical Engineering 46, 26–28 (2001)

    Article  Google Scholar 

  15. Sebastian, R., Zimmerman, V., Romero, D., Frangi, A.F.: Construction of a computational anatomical model of the peripheral cardiac conduction system. IEEE Transactions on Biomedical En. 58, 3479–3482 (2011)

    Article  Google Scholar 

  16. Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulation. IEEE Transactions on Medical Imaging 25, 612–625 (2006)

    Article  Google Scholar 

  17. Sermesant, M., Konukog̃lu, E., Delingette, H., Coudière, Y., Chinchapatnam, P., Rhode, K.S., Razavi, R., Ayache, N.: An Anisotropic Multi-front Fast Marching Method for Real-Time Simulation of Cardiac Electrophysiology. In: Sachse, F.B., Seemann, G. (eds.) FIHM 2007. LNCS, vol. 4466, pp. 160–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Smith, N., de Vecchi, A., McCormick, M., Nordsletten, D., Camara, O., Frangi, A.F., Delingette, H., Sermesant, M., Relan, J., Ayache, N., Krueger, M.W., Schulze, W.H.W., Hose, R., Valverde, I., Beerbaum, P., Staicu, C., Siebes, M., Spaan, J., Weese, P.H.J., Chapelle, H.L.D., Rezavi, R.: euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 1(3), 349–364 (2011)

    Article  Google Scholar 

  19. Streeter, D., Spontnitz, H., Patel, D., Ross, J., Sonnenblick, E.: Fiber orientation in the canine left ventricle during diastole and systole. Circulation Research 24, 339–347 (1969)

    Article  Google Scholar 

  20. Waechter, I., Kneser, R., Korosoglou, G., Peters, J., Bakker, N.H., van der Boomen, R., Weese, J.: Patient Specific Models for Planning and Guidance of Minimally Invasive Aortic Valve Implantation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 526–533. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3d cardiac CT volumes using marginal space learning and steerable features. IEEE Transactions on Medical Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nickisch, H., Barschdorf, H., Weber, F.M., Krueger, M.W., Dössel, O., Weese, J. (2013). From Image to Personalized Cardiac Simulation: Encoding Anatomical Structures into a Model-Based Segmentation Framework. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2012. Lecture Notes in Computer Science, vol 7746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36961-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36961-2_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36960-5

  • Online ISBN: 978-3-642-36961-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics