A Lattice Boltzmann Simulation of Hemodynamics in a Patient-Specific Aortic Coarctation Model

  • Amanda Peters Randles
  • Moritz Bächer
  • Hanspeter Pfister
  • Efthimios Kaxiras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7746)


In this paper, we propose a system to determine the pressure gradient at rest in the aorta. We developed a technique to efficiently initialize a regular simulation grid from a patient-specific aortic triangulated model. On this grid we employ the lattice Boltzmann method to resolve the characteristic fluid flow through the vessel. The inflow rates, as measured physiologically, are imposed providing accurate pulsatile flow. The simulation required a resolution of at least 20 microns to ensure a convergence of the pressure calculation. HARVEY, a large-scale parallel code, was run on the IBM Blue Gene/Q supercomputer to model the flow at this high resolution. We analyze and evaluate the strengths and weaknesses of our system.


computational fluid dynamics coarctation of the aorta lattice boltzmann parallel computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Figueroa, A., Mansi, T., Sharma, P., Wilson, D.N.: CFD challenge: Simulation of hemodynamics in a patient-specific aortic coarctation model (2012),
  2. 2.
    Rao, P.: Coarctation of the aorta. Current Cardiology Reports 7, 425–434 (2005), doi:10.1007/s11886-005-0060-0CrossRefGoogle Scholar
  3. 3.
    Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press (2001)Google Scholar
  4. 4.
    Chen, S., Doolean, G.D.: Lattice Boltzmann method for fluid flow. Annual Review Fluid Mechanics 30, 329–364 (1998)CrossRefGoogle Scholar
  5. 5.
    Bhatnagar, P., Gross, E., Krook, M.: A model for collision processes in gases. Physics Review Letters 94, 511 (1954)zbMATHGoogle Scholar
  6. 6.
    Zhang, R., Shan, X., Chen, H.: Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation. Physics Review E 74, 1–7 (2006)Google Scholar
  7. 7.
    Peters, A., Melchionna, S., Kaxiras, E., Lätt, J., Sircar, J., Bernaschi, M., Bison, M., Succi, S.: Multiscale simulation of cardiovascular flows on the IBM Blue Gene/P: Full heart-circulation system at red-blood cell resolution. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010, pp. 1–10. IEEE Computer Society (2010)Google Scholar
  8. 8.
    Melchionna, S., Bernaschi, M., Succi, S., Kaxiras, E., Rybicki, F.J., Mitsouras, D., Coskun, A.U., Feldman, C.L.: Hydrokinetic approach to large-scale cardiovascular blood flow. Computer Physics Communications 181(3), 462–472 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Henderson, A.: Paraview guide, a parallel visualization application (2007)Google Scholar
  10. 10.
    Bærentzen, J.A., Anaæs, H.: Signed distance computation using the angle weighted pseudonormal. IEEE Transactions on Visualization and Computer Graphics 11(3), 243–253 (2005)CrossRefGoogle Scholar
  11. 11.
    Peters Randles, A., Kale, V., Gropp, W., Kaxiras, E.: Performance analysis of the Lattice Boltzmann model beyond Navier-Stokes. Manuscript submitted for publication (2012)Google Scholar
  12. 12.
    Haring, R.A., Ohmacht, M., Fox, T.W., Gschwind, M.K., Satterfield, D.L., Sugavanam, K., Coteus, P.W., Heidelberger, P., Blumrich, M.A., Wisniewski, R.W., Gara, A., Chiu, G.L.T., Boyle, P.A., Chist, N.H., Kim, C.: The IBM Blue Gene/Q compute chip, vol. 32, pp. 48–60. IEEE Computer Society, Los Alamitos (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Amanda Peters Randles
    • 1
  • Moritz Bächer
    • 1
  • Hanspeter Pfister
    • 1
  • Efthimios Kaxiras
    • 1
  1. 1.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations