Mixture-Model-Based Segmentation of Myocardial Delayed Enhancement MRI

  • Anja Hennemuth
  • Ola Friman
  • Markus Huellebrand
  • Heinz-Otto Peitgen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7746)


Myocardial viability assessment is an important task in the diagnosis of coronary heart disease. The measurement of the delayed enhancement effect, the accumulation of contrast agent in defective tissue, has become the gold standard for detecting necrotic tissue with MRI. The purpose of the presented work was to provide a segmentation and quantification method for delayed enhancement MRI. To this end, a suitable mixture model for the myocardial intensity distribution is determined based on expectation maximization and the comparison of the fit accuracy. The subsequent watershed-based segmentation uses the intensity threshold information derived from this model. Preliminary results are derived from an analysis of datasets provided by the STACOM challenge organizers. The segmentation provided reasonable results in all datasets, but the method strongly depends on the underlying myocardium segmentation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gerber, B.L., Rousseau, M.F., Ahn, S.A., le Polain de Waroux, J.B., Pouleur, A.C., Phlips, T., Vancraeynest, D., Pasquet, A., Vanoverschelde, J.L.J.: Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy. J. Am. Coll. Cardiol. 59(9), 825–835 (2012)CrossRefGoogle Scholar
  2. 2.
    Kim, R., Fieno, D., Parrish, T., Harris, K., Chen, E., Simonetti, O., Bundy, J., Finn, J., Klocke, F., Judd, R.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19), 1992–2002 (1999)CrossRefGoogle Scholar
  3. 3.
    Kolipaka, A., Chatzimavroudis, G., White, R., O’Donnell, T., Setser, R.: Segmentation of non-viable myocardium in delayed enhancement magnetic resonance images. Int. J. Cardiovasc. Imaging 21(2-3), 303–311 (2005)CrossRefGoogle Scholar
  4. 4.
    Positano, V., Pingitore, A., Giorgetti, A., Favilli, B., Santarelli, M., Landini, L., Marzullo, P., Lombardi, M.: A Fast and Effective Method to Assess Myocardial Necrosis by Means of Contrast Magnetic Resonance Imaging. Journal of Cardiovascular Magnetic Resonance 7(2), 487–494 (2005)CrossRefGoogle Scholar
  5. 5.
    O’Donnell, T., Xu, N., Setser, R., White, R.: Semi-automatic segmentation of nonviable cardiac tissue using cine and delayed enhancement magnetic resonance images. In: Proceedings of SPIE, vol. 5031, p. 242 (2003)Google Scholar
  6. 6.
    Hsu, L., Natanzon, A., Kellman, P., Hirsch, G., Aletras, A., Arai, A.: Quantitative myocardial infarction on delayed enhancement MRI, part I: animal validation of an automated feature analysis and combined thresholding infarct sizing algorithm. J. Magn. Reson. Imaging 23, 298–308 (2006)CrossRefGoogle Scholar
  7. 7.
    Choi, K., Kim, R., Gubernikoff, G., Vargas, J., Parker, M., Judd, R.: Transmural Extent of Acute Myocardial Infarction Predicts Long-Term Improvement in Contractile Function. Circulation 104(10), 1101–1107 (2001)CrossRefGoogle Scholar
  8. 8.
    Tao, Q., Milles, J., Zeppenfeld, K., Lamb, H., Bax, J., Reiber, J., van der Geest, R.: Automated segmentation of myocardial scar in late enhancement MRI using combined intensity and spatial information. Magn. Reson. Med. 64(2), 586–594 (2010)Google Scholar
  9. 9.
    Elagouni, K., Ciofolo-Veit, C., Mory, B.: Automatic segmentation of pathological tissue in cardiac MRI. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 472–475 (2010)Google Scholar
  10. 10.
    Saering, D., Ehrhardt, J., Stork, A., Bansmann, P., Lund, G., Handels, H.: Analysis of the Left Ventricle after Myocardial Infarction combining 4D Cine-MR and 3D DE-MR Image Sequences. In: Bildverarbeitung fuer die Medizin, pp. 56–60 (2006)Google Scholar
  11. 11.
    Dietrich, O., Raya, J., Reeder, S., Ingrisch, M., Reiser, M., Schoenberg, S.: Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magn. Reson. Imaging 26(6), 754–762 (2008)CrossRefGoogle Scholar
  12. 12.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications (1965)Google Scholar
  13. 13.
    Hennemuth, A., Seeger, A., Friman, O., Miller, S., Klumpp, B., Oeltze, S., Peitgen, H.O.: A comprehensive approach to the analysis of contrast enhanced cardiac MR images. IEEE Trans. Med. Imaging 27(11), 1592–1610 (2008)CrossRefGoogle Scholar
  14. 14.
    Friman, O., Hennemuth, A., Peitgen, H.O.: A Rician-Gaussian Mixture Model for Segmenting Delayed Enhancement MRI Images. In: ISMRM 2008, p. 1040 (2008)Google Scholar
  15. 15.
    Hennemuth, A., Friman, O., Huellebrand, M., Peitgen, H., Mahnken, A.: Semi-Automatic Quantification of Late Enhancement in CT and MRI Images. In: ISMRM 2012, p. 1251 (2012)Google Scholar
  16. 16.
    Hunold, P., Schlosser, T., Barkhausen, J.: Magnetic resonance cardiac perfusion imaging-a clinical perspective. Eur. Radiol. 16(8), 1779–1788 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anja Hennemuth
    • 1
  • Ola Friman
    • 1
  • Markus Huellebrand
    • 1
  • Heinz-Otto Peitgen
    • 1
  1. 1.Fraunhofer MEVISBremenGermany

Personalised recommendations