Skip to main content

Swarmic Sketches and Attention Mechanism

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7834)

Abstract

This paper introduces a novel approach deploying the mechanism of ‘attention’ by adapting a swarm intelligence algorithm – Stochastic Diffusion Search – to selectively attend to detailed areas of a digital canvas. Once the attention of the swarm is drawn to a certain line within the canvas, the capability of another swarm intelligence algorithm – Particle Swarm Intelligence – is used to produce a ‘swarmic sketch’ of the attended line. The swarms move throughout the digital canvas in an attempt to satisfy their dynamic roles – attention to areas with more details – associated to them via their fitness function. Having associated the rendering process with the concepts of attention, the performance of the participating swarms creates a unique, non-identical sketch each time the ‘artist’ swarms embark on interpreting the input line drawings. The detailed investigation of the ‘creativity’ of such systems have been explored in our previous work; nonetheless, this papers provides a brief account of the ‘computational creativity’ of the work through two prerequisites of creativity within the swarm intelligence’s two infamous phases of exploration and exploitation; these phases are described herein through the attention and tracing mechanisms respectively.

Keywords

  • Stochastic Diffusion Search
  • Particle swarm optimisation
  • sketching
  • drawing
  • attention

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36955-1_8
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-36955-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Rifaie, M.M., Aber, A., Bishop, M.: Cooperation of nature and physiologically inspired mechanisms in visualisation. In: Ursyn, A. (ed.) Biologically-Inspired Computing for the Arts: Scientific Data through Graphics. IGI Global, United States (2012) ISBN13: 9781466609426, ISBN10: 1466609427

    Google Scholar 

  2. Al-Rifaie, M.M., Bishop, M.: Weak vs. strong computational creativity. In: AISB 2012: Computing and Philosophy, University of Birmingham, Birmingham, U.K. (2012)

    Google Scholar 

  3. Al-Rifaie, M.M., Bishop, M.: Swarmic Painting with Colour–attentive Swarms. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 97–108. Springer, Heidelberg (2013)

    Google Scholar 

  4. Al-Rifaie, M.M., Bishop, M., Blackwell, T.: An investigation into the merger of stochastic diffusion search and particle swarm optimisation. In: GECCO 2011: Proceedings of the 2011 GECCO Conference Companion on Genetic and Evolutionary Computation, pp. 37–44. ACM (2011)

    Google Scholar 

  5. Al-Rifaie, M.M., Bishop, M., Caines, S.: Creativity and autonomy in swarm intelligence systems. In: Bishop, M., Erden, Y. (eds.) Journal of Cognitive Computation: Computational Creativity, Intelligence and Autonomy, vol. 3, pp. 320–331. Springer (2012)

    Google Scholar 

  6. Aupetit, S., Bordeau, V., Monmarche, N., Slimane, M., Venturini, G.: Interactive evolution of ant paintings. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 2, pp. 1376–1383 (2004)

    Google Scholar 

  7. Bishop, J.: Stochastic searching networks. In: Proc. 1st IEE Conf. on Artificial Neural Networks, London, UK, pp. 329–331 (1989)

    Google Scholar 

  8. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proc of the Swarm Intelligence Symposium, pp. 120–127. IEEE, Honolulu (2007)

    Google Scholar 

  9. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in amultidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)

    CrossRef  Google Scholar 

  10. Greenfield, G.: Evolutionary Methods for Ant Colony Paintings. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 478–487. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  11. James, W.: The principles of psychology (1890)

    Google Scholar 

  12. Kames, H.H.: Elements of Criticism (1769)

    Google Scholar 

  13. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948. IEEE Service Center, Piscataway (1995)

    CrossRef  Google Scholar 

  14. Moglich, M., Maschwitz, U., Holldobler, B.: Tandem calling: A new kind of signal in ant communication. Science 186(4168), 1046–1047 (1974)

    CrossRef  Google Scholar 

  15. Monmarche, N., Aupetit, S., Bordeau, V., Slimane, M., Venturini, G.: Interactive evolution of ant paintings. In: McKay, B., et al. (eds.) 2003 Congress on Evolutionary Computation, vol. 2, pp. 1376–1383. IEEE Press (2003)

    Google Scholar 

  16. Moura, L., Ramos, V.: Swarm paintings–nonhuman art. Architopia Book, Art, Architecture and Science pp. 5–24 (2007)

    Google Scholar 

  17. Shi, Y., Eberhart, R.C.: Parameter Selection in Particle Swarm Optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  18. Taylor, C.C.W.: Berkeley’s theory of abstract ideas. The Philosophical Quarterly 97–115 (1978)

    Google Scholar 

  19. Titchener, E.B.: Lectures on the elementary psychology of feeling and attention. The Macmillan Company (1908)

    Google Scholar 

  20. Urbano, P.: Playing in the Pheromone Playground: Experiences in Swarm Painting. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 527–532. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  21. Urbano, P.: Consensual Paintings. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 622–632. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  22. Vu, P.: Historical Overview of Research on Attention. Sage Publications, Incorporated (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

al-Rifaie, M.M., Bishop, J.M. (2013). Swarmic Sketches and Attention Mechanism. In: Machado, P., McDermott, J., Carballal, A. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2013. Lecture Notes in Computer Science, vol 7834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36955-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36955-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36954-4

  • Online ISBN: 978-3-642-36955-1

  • eBook Packages: Computer ScienceComputer Science (R0)