Skip to main content

Finding Image Features Associated with High Aesthetic Value by Machine Learning

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7834)

Abstract

A major goal of evolutionary art is to get images of high aesthetic value. We assume that some features of images are associated with high aesthetic value and want to find them. We have taken two image databases that have been rated by humans, a photographic database and one of abstract images generated by evolutionary art software. We have computed 55 features for each database. We have extracted two categories of rankings, the lowest and the highest. Using feature extraction methods from machine learning we have identified the features most associated with differences. For the photographic images the key features are wavelet and texture features. For the abstract images the features are colour based features.

Keywords

  • Evolutionary Art
  • Genetic Art
  • Feature Extraction
  • Feature Selection

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36955-1_5
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-36955-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkins, D., Klapaukh, R., Browne, W., Mengjie, M.: Evolution of Aesthetically Pleasing Images Without Human-In-The-Loop. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2010)

    Google Scholar 

  2. Datta, R., Joshi, D., Li, J., Wang, J.: Studying Aesthetics in Photographic Images Using a Computational Approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11744078_23

    CrossRef  Google Scholar 

  3. Galanter, P.: Complexism and the Role of Evolutionary Art. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution. Natural Computing Series, pp. 311–332. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  4. Machado, P., Romero, J., Manaris, B.: Experiments in Computational Aesthetics. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution. Natural Computing Series, pp. 381–415. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  5. McCormack, J.: Open Problems in Evolutionary Music and Art. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 428–436. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  6. Nadal, M., Pearce, M.: The Copenhagen Neuroaesthetics Conference: Prospects and Pitfalls for an Emerging Field. Brain and Cognition 76(1), 172–183 (2011)

    CrossRef  Google Scholar 

  7. Neufeld, C., Ross, B., Ralph, W.: The evolution of artistic filters. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 335–356. Springer, Heidelberg (2007)

    Google Scholar 

  8. Newall, M.: What is a Picture?: Depiction, Realism, Abstraction. Palgrave Macmillan (2011)

    Google Scholar 

  9. Spehar, B., Clifford, C.W.G., Newell, B.R., Taylor, R.P.: Universal Aesthetic of Fractals. Computers & Graphics 27(5), 813–820 (2003)

    CrossRef  Google Scholar 

  10. Taylor, R.P., Spehar, B., Clifford, C.W.G., Newell, B.R.: The Visual Complexity of Pollock’s Dripped Fractals. In: Minai, A.A., Bar-Yam, Y. (eds.) Unifying Themes in Complex Systems IV, pp. 175–182. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  11. Tooby, J., Cosmides, L.: Does Beauty Build Adapted Minds? Toward an Evolutionary Theory of Aesthetics, Fictions, and the Arts. Substance 30(1), 6–27 (2001)

    CrossRef  Google Scholar 

  12. Welsch, W.: On the Universal Appreciation of Beauty. International Yearbook of Aesthetics 12, 6–32 (2008)

    Google Scholar 

  13. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  14. Xu, Q., D’Souza, D., Ciesielski, V.: Evolving images for entertainment. In: Proceedings of the 2007 Australasian Conference on Interactive Entertainment, December 3-5, pp. 1–8. ACM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ciesielski, V., Barile, P., Trist, K. (2013). Finding Image Features Associated with High Aesthetic Value by Machine Learning. In: Machado, P., McDermott, J., Carballal, A. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2013. Lecture Notes in Computer Science, vol 7834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36955-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36955-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36954-4

  • Online ISBN: 978-3-642-36955-1

  • eBook Packages: Computer ScienceComputer Science (R0)