Skip to main content

Decision Chain Encoding: Evolutionary Design Optimization with Complex Constraints

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7834)

Abstract

A novel encoding technique is presented that allows constraints to be easily handled in an intuitive way. The proposed encoding technique structures the genotype-phenotype mapping process as a sequential chain of decision points, where each decision point consists of a choice between alternative options. In order to demonstrate the feasibility of the decision chain encoding technique, a case-study is presented for the evolutionary optimization of the architectural design for a large residential building.

Keywords

  • evolutionary
  • multi-criteria optimization
  • constraints
  • encoding
  • decoding

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36955-1_14
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-36955-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bean, J.: Genetic Algorithms and random keys for sequencing and optimization. ORSA Journal of Computing 2(2), 154–160 (1992)

    Google Scholar 

  2. Coenders, J.L.: Interfacing between parametric associative and structural software. In: Proceedings of the 4th International Conference on Structural and Construction Engineering, Melbourne, Australia (2007)

    Google Scholar 

  3. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 1st edn. Natural Computing Series. Springer (2003)

    Google Scholar 

  4. Fonseca, C.M., Paquete, L., Ibáñez, M.L.: An Improved Dimension - Sweep Algorithm for the Hypervolume Indicator. In: Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006), pp. 1157–1163. IEEE Press, Piscataway (2006)

    Google Scholar 

  5. Frazer, J.H.: An Evolutionary Architecture. AA Publications, London, UK (1995)

    Google Scholar 

  6. Janssen, P.H.T.: A Design Method and a Computational Architecture for Generating and Evolving Building Designs. School of Design, Hong Kong Polytechnic University. Degree of Doctor of Philosophy (2004)

    Google Scholar 

  7. Janssen, P.H.T., Basol, C., Chen, K.W.: Evolutionary Developmental Design for Non-Programmers. In: Proceedings of 29th eCAADe Conference, Ljubljana (Slovenia) September 21-24, pp. 245-252 (2011)

    Google Scholar 

  8. Janssen, P.H.T., Chen, K.W.: Visual Dataflow Modelling: A Comparison of Three Systems. In: Proceedings of the CAAD Futures 2011, Liege, Belgium, July 4-8, pp. 801–816 (2011)

    Google Scholar 

  9. Janssen, P.H.T., Chen, K.W., Basol, C.: Iterative Virtual Prototyping: Performance Based Design Exploration. In: Proceedings of 29th eCAADe Conference, Ljubljana, Slovenia, September 21-24, pp. 253–260 (2011)

    Google Scholar 

  10. Janssen, P.H.T., Kaushik, V.: Iterative Refinement through Simulation: Exploring trade-offs between speed and accuracy. In: Proceedings of the 30th eCAADe Conference, Prague, Czech Republic, September 12-14, pp. 555–563 (2012)

    Google Scholar 

  11. Kumar, S., Bentley, P.J.: Computational embryology: Past, Present and Future. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing: Theory and Applications, pp. 461–477. Springer, New York (2003)

    Google Scholar 

  12. Lagios, K., Niemasz, J., Reinhart, C.F.: Animated Building Performance Simulation (ABPS) – Linking Rhinoceros/Grasshopper with Radiance/Daysim. In: Proceedings of SimBuild, New York City (2010)

    Google Scholar 

  13. OMA (2013), http://oma.eu/projects/2009/the-interlace

  14. Toth, B., Salim, F., Frazer, J., Drogemuller, R., Burry, J., Burry, M.: Energy-oriented Design Tools for Collaboration in the Cloud. International Journal of Architectural Computing 4(9), 339–359 (2011)

    CrossRef  Google Scholar 

  15. Shea, K., Aish, R., Gourtovaia, M.: Towards Integrated Performance-Driven Generative Design Tools. Automation in Construction 14(2), 253–264 (2005)

    CrossRef  Google Scholar 

  16. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janssen, P., Kaushik, V. (2013). Decision Chain Encoding: Evolutionary Design Optimization with Complex Constraints. In: Machado, P., McDermott, J., Carballal, A. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2013. Lecture Notes in Computer Science, vol 7834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36955-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36955-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36954-4

  • Online ISBN: 978-3-642-36955-1

  • eBook Packages: Computer ScienceComputer Science (R0)