Themis: Energy Efficient Management of Workloads in Virtualized Data Centers

  • Gaurav Dhiman
  • Vasileios Kontorinis
  • Raid Ayoub
  • Liuyi Zhang
  • Chris Sadler
  • Dean Tullsen
  • Tajana Simunic Rosing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7640)

Abstract

Virtualized data centers facilitate higher resource utilization and energy efficiency through consolidation. However, mixing services-oriented workloads with throughput (batch) jobs is typically avoided due to complex interactions and widely different quality of service (QoS) requirements. We introduce a complete VM resource management framework, called Themis, which manages combined services and batch jobs, maximizing energy-efficient throughput of the latter without sacrificing the service guarantees of the former. Themis’ resource management policy outperforms the prior proposed policies by up to 35% on average in work done per Joule when measured on a data center testbed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amza, C., Cecchet, E., Chanda, A., Cox, A.L., Elnikety, S., Gil, R., Marguerite, J., Rajamani, K., Zwaenepoel, W.: Specification & implementation of dynamic web site benchmarks. In: IEEE WWC (2002)Google Scholar
  2. 2.
  3. 3.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: SOSP 2003 (2003)Google Scholar
  4. 4.
    Barroso, L., Holzle, U.: The Case for Energy-Proportional Computing. IEEE Computer 40(12) (December 2007)Google Scholar
  5. 5.
    Blagodurov, S., Zhuravlev, S.: Contention-Aware Scheduling. ACM Trans. on Computing Systems (2010)Google Scholar
  6. 6.
    Bobroff, N., Kochut, A., Beaty, K.: Dynamic Placement of Virtual Machines for Managing SLA Violations. IEEE Integrated Network Management (2007)Google Scholar
  7. 7.
    Chase, J., Anderson, D., Thaka, P., Vahdat, A., Doyle, R.: Managing Energy and Server Resources in Hosting Centers. In: SOSP 2001 (2001)Google Scholar
  8. 8.
    Clark, C., Fraser, K., Hand, S., Hansen, J., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live Migration of Virtual Machines. In: NSDI (2005)Google Scholar
  9. 9.
    Dhiman, G., Kontorinis, V., Tullsen, D., Rosing, T., Saxe, E., Chew, J.: Dynamic Workload Characterization for Power Efficient Scheduling on CMP Systems. In: ISLPED (2010)Google Scholar
  10. 10.
    Dhiman, G., Marchetti, G., Rosing, T.: vGreen: A System for Energy Efficient Computing in Virtualized Environments. In: ISLPED (2009)Google Scholar
  11. 11.
    Dhiman, G., Pusukuri, K., Rosing, T.: Analysis of DVFS for Energy Management. In: USENIX-HotPower (2008)Google Scholar
  12. 12.
    Fan, X., Weber, W., Barroso, L.: Power Provisioning for a Warehouse-sized Computer. In: ISCA (2007)Google Scholar
  13. 13.
    Ge, R., Feng, X., Feng, W., Cameron, K.: CPU MISER. In: ICPP (2007)Google Scholar
  14. 14.
    Hermenier, F., Lorca, X., Menaud, J., Muller, G., Lawall, J.: Entropy: a Consolidation Manager. In: VEE (2009)Google Scholar
  15. 15.
    Hoelzle, U., Barroso, L.: The Datacenter as a Computer (2010)Google Scholar
  16. 16.
    IPMI, v2.0 Specification, Intel (2004)Google Scholar
  17. 17.
    Lee, M., Krishnakumar, A., Krishnan, P., Singh, N., Yajnik, S.: Supporting real-time in the Xen hypervisor. In: VEE 2010 (2010)Google Scholar
  18. 18.
    Mcnett, M., Gupta, D., Vahdat, A., Voelker, G.: Usher. In: LISA 2007 (2007)Google Scholar
  19. 19.
    Meisner, D., Gold, B., Wenisch, T.: PowerNap: Eliminating Server Idle Power. In: ASPLOS (2009)Google Scholar
  20. 20.
    Merkel, A., Stoess, J., Bellosa, F.: Resource-Conscious Scheduling for Energy Efficiency. In: EuroSys 2010 (2010)Google Scholar
  21. 21.
    Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-Clouds: Managing Interference for QoS-Awareness. In: EuroSys (2010)Google Scholar
  22. 22.
    Nieh, J., Lam, M.: A Smart Scheduler for Multimedia Applications. ACM Trans. Comput. Syst. 21 (2003)Google Scholar
  23. 23.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Soman, S., Youseff, L., Zagorodnov, D.: Eucalyptus. In: ISCCG 2009 (2009)Google Scholar
  24. 24.
    Ongaro, D., Cox, A., Rixner, S.: Scheduling I/O in Virtual Machine Monitors. In: VEE (2008)Google Scholar
  25. 25.
  26. 26.
    Padala, P., Hou, K., Shin, K., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.: Automated Control of Multiple Virtualized Resources. In: EuroSys 2009 (2009)Google Scholar
  27. 27.
    Rajamani, K., Lefurgy, C.: On Evaluating Request-Distribution Schemes for Saving Energy in Server Clusters. In: ISPASS (2003)Google Scholar
  28. 28.
    Sundaram, V., Chandra, A., Goyal, P., Shenoy, P., Sahni, J., Vin, H.: Application Performance in the QLinux Multimedia Operating System. In: MULTIMEDIA 2000 (2000)Google Scholar
  29. 29.
    Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and Gray-box Strategies for Virtual Machine Migration. In: NSDI (2007)Google Scholar
  30. 30.
    Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: OSDI (2004)Google Scholar
  31. 31.
    OpenStack (2012), http://docs.openstack.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gaurav Dhiman
    • 1
  • Vasileios Kontorinis
    • 1
  • Raid Ayoub
    • 1
  • Liuyi Zhang
    • 1
  • Chris Sadler
    • 2
  • Dean Tullsen
    • 1
  • Tajana Simunic Rosing
    • 1
  1. 1.UCSDUSA
  2. 2.GoogleUSA

Personalised recommendations