Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

European Conference on Parallel Processing

Euro-Par 2012: Euro-Par 2012: Parallel Processing Workshops pp 337–346Cite as

  1. Home
  2. Euro-Par 2012: Parallel Processing Workshops
  3. Conference paper
Performance and Energy Efficiency Analysis of Data Reuse Transformation Methodology on Multicore Processor

Performance and Energy Efficiency Analysis of Data Reuse Transformation Methodology on Multicore Processor

  • Abdullah Al Hasib27,
  • Per Gunnar Kjeldsberg28 &
  • Lasse Natvig27 
  • Conference paper
  • 2424 Accesses

  • 1 Citations

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7640)

Abstract

Memory latency and energy efficiency are two key constraints to high performance computing systems. Data reuse transformations aim at reducing memory latency by exploiting temporal locality in data accesses. Simultaneously, modern multicore processors provide the opportunity of improving performance with reduced energy dissipation through parallelization. In this paper, we investigate to what extent data reuse transformations in combination with a parallel programming model in a multicore processor can meet the challenges of memory latency and energy efficiency constraints. As a test case, a “full-search motion estimation” kernel is run on the Intel® CoreTM i7-2600 processor. Energy Delay Product (EDP) is used as a metric to compare energy efficiencies. Achieved results show that performance and energy efficiency can be improved by a factor of more than 6 and 15, respectively, by exploiting a data reuse transformation methodology and parallel programming model in a multicore system.

Keywords

  • Performance
  • energy efficiency
  • data reuse transformation methodology
  • parallel programming

Download conference paper PDF

References

  1. Albers, S.: Energy-Efficient Algorithms. Communications of the ACM 53(5), 86–96 (2011)

    CrossRef  Google Scholar 

  2. Wuytack, S., Diguet, J.P., Catthoor, F., et al.: Formalized Methodology for Data Reuse Exploration for Low-Power Hierarchical Memory Mappings. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 6(4), 529–537 (1998)

    CrossRef  Google Scholar 

  3. Catthoor, F., Danckaert, K., Kulkarni, K., et al.: Data Access and Storage Management for Embedded Programmable Processors. Kluwer Academic Publishers, Dordrecht (2002)

    CrossRef  Google Scholar 

  4. Catthoor, F., Wuytack, S., de Greef, G., et al.: Custom Memory Management Methodology: Exploration of Memory Organisation for Embedded Multimedia System Design. Kluwer Academic Publishers, Norwell (1998)

    CrossRef  MATH  Google Scholar 

  5. Zervas, N.D., Masselos, K., Goutis, C.E.: Data-Reuse Exploration for Low-Power Realization of Multimedia Applications on Embedded Cores. In: Proc. 9th International Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS 1999, pp. 71–80 (1999)

    Google Scholar 

  6. Chatzigeorgiou, A., Chatzigeorgiou, E., Kougia, S., et al.: Evaluating the Effect of Data-Reuse Transformations on Processor Power Consumption (2001)

    Google Scholar 

  7. Vassiliadis, N., Chormoviti, A., Kavvadias, N., et al.: The Effect of Data-Reuse Transformations on Multimedia Applications for Application Specific Processors. In: Proc. Intelligent Data Acquisition and Advanced Computing Systems Technology and Applications, IDAACS 2005, pp. 179–182 (September 2005)

    Google Scholar 

  8. Kalva, H., Colic, A., Garcia, A., et al.: Parallel Programming for Multimedia Applications. Multimedia Tools and Applications 51(2), 801–818 (2011)

    CrossRef  Google Scholar 

  9. Chen, L., Hu, Z., Lin, J., et al.: Optimizing the Fast Fourier Transform on a Multi-core Architectures. In: Proc. Parallel and Distributed Processing Symposium, IPDPS 2007, pp. 1–8 (March 2007)

    Google Scholar 

  10. Zhang, Y., Kandemir, M., Yemliha, T.: Studying Inter-core Data Reuse in Multicores. In: Proc. ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2011, pp. 25–36 (2011)

    Google Scholar 

  11. Marchal, P., Catthoor, F., Bruni, D., et al.: Integrated Task Scheduling and Data Assignment for SDRAMs in Dynamic Applications. IEEE Design & Test of Computers 21(5), 378–387 (2004)

    CrossRef  Google Scholar 

  12. Podobas, A., Brorsson, M., Faxén, K.F.: A Comparison of some recent Task-based Parallel Programming Models. In: Proc. 3rd Workshop on Programmability Issues for Multi-Core Computers, Pisa, Italy (January 2010)

    Google Scholar 

  13. OpenMP Architecture Review Board: OpenMP Application Program Interface (July 2011), http://www.openmp.org/mp-documents/OpenMP3.1.pdf

  14. Komarek, T., Pirsch, P.: Array Architectures for Block Matching Algorithms. IEEE Transactions on Circuits and Systems 36(10), 1301–1308 (1989)

    CrossRef  Google Scholar 

  15. Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual (2011)

    Google Scholar 

  16. Rivoire, S., Shah, M.A., Ranganathan, P., et al.: Models and Metrics to Enable Energy-Efficiency Optimizations. Computer 40(12), 39–48 (2007)

    CrossRef  Google Scholar 

  17. Flautner, K., Kim, N.S., Martin, S., et al.: Drowsy Caches: Simple Techniques for Reducing Leakage Power. In: Proc. 29th Annual International Symposium on Computer Architecture, ISCA 2002, Washington, DC, USA, pp. 148–157 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway

    Abdullah Al Hasib & Lasse Natvig

  2. Department of Electronics and Telecommunications, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway

    Per Gunnar Kjeldsberg

Authors
  1. Abdullah Al Hasib
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Per Gunnar Kjeldsberg
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Lasse Natvig
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Computer Technology Institute and Press “Diophantus” & Department of Computer Engineering and Informatics, University of Patras, 26504, Rio, Greece

    Ioannis Caragiannis

  2. Technische Universität Wien, Austria

    Michael Alexander

  3. Artificial Intelligence Research Institute (IIIA), Spanish National Research Council (CSIC), Spain

    Rosa Maria Badia

  4. Department of Medical and Surgical Sciences, Bioinformatics Laboratory, University Magna Græcia of Catanzaro, 88100, Catanzaro, Italy

    Mario Cannataro

  5. Inria Rennes, France

    Alexandru Costan

  6. Dept. Computer Science, Univ. Pisa, Largo Pontecorvo 3, 56127, Pisa, Italy

    Marco Danelutto

  7. Inria, 46 Allée d’Italie, 69364, Lyon Cedex 7, France

    Frédéric Desprez

  8. Université de Versailles, France

    Bettina Krammer

  9. Department of Computer Engineering (DISCA), Universitat Politècnica de València, Spain

    Julio Sahuquillo

  10. Oak Ridge National Laboratory, USA

    Stephen L. Scott

  11. Technische Universität München, Germany

    Josef Weidendorfer

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hasib, A.A., Kjeldsberg, P.G., Natvig, L. (2013). Performance and Energy Efficiency Analysis of Data Reuse Transformation Methodology on Multicore Processor. In: , et al. Euro-Par 2012: Parallel Processing Workshops. Euro-Par 2012. Lecture Notes in Computer Science, vol 7640. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36949-0_37

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-36949-0_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36948-3

  • Online ISBN: 978-3-642-36949-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.226.122.122

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.