P3S: Protein Structure Similarity Search

  • Jakub Galgonek
  • Tomáš Skopal
  • David Hoksza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7640)


Similarity search in protein structure databases is an important task of computational biology. To reduce the time required to search for similar structures, indexing techniques are being often introduced. However, as the indexing phase is computationally very expensive, it becomes useful only when a large number of searches are expected (so that the expensive indexing cost is amortized by cheaper search cost). This is a typical situation for a public similarity search service. In this article we introduce the P3S web application ( ) allowing, given a query structure, to identify the set of the most similar structures in a database. The result set can be browsed interactively, including visual inspection of the structure superposition, or it can be downloaded as a zip archive. P3S employs the SProt similarity measure and an indexing technique based on the LAESA method, both introduced recently by our group. Together with the measure and the index, the method presents an effective and efficient tool for querying protein structure databases.


protein structure similarity retrieval web service 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH–a hierarchic classification of protein domain structures. Structure (London, England: 1993) 5(8), 1093–1108 (1997)CrossRefGoogle Scholar
  2. 2.
    Meslamani, J., Rognan, D., Kellenberger, E.: sc-PDB: a database for identifying variations and multiplicity of ’druggable’ binding sites in proteins. Bioinformatics 27(9), 1324–1326 (2011)CrossRefGoogle Scholar
  3. 3.
    Berman, H.M., Westbrook, J.D., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Res. 28(1), 235–242 (2000)CrossRefGoogle Scholar
  4. 4.
    Zhu, J., Weng, Z.: FAST: a novel protein structure alignment algorithm. Proteins 58(3), 618–627 (2005)CrossRefGoogle Scholar
  5. 5.
    Sacan, A., Toroslu, H.I., Ferhatosmanoglu, H.: Integrated search and alignment of protein structures. Bioinformatics 24(24), 2872–2879 (2008)CrossRefGoogle Scholar
  6. 6.
    Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11(9), 739–747 (1998)CrossRefGoogle Scholar
  7. 7.
    Lo, W.C., Huang, P.J., Chang, C.H., Lyu, P.C.: Protein structural similarity search by Ramachandran codes. BMC Bioinformatics 8 (2007)Google Scholar
  8. 8.
    Tung, C.H.H., Huang, J.W.W., Yang, J.M.M.: Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for rapid search of protein structure database. Genome Biol. 8(3), R31 (2007)Google Scholar
  9. 9.
    Aung, Z., Tan, K.L.: Rapid 3D protein structure database searching using information retrieval techniques. Bioinformatics 20(7), 1045–1052 (2004)CrossRefGoogle Scholar
  10. 10.
    Chothia, C., Lesk, A.M.: The relation between the divergence of sequence and structure in proteins. The EMBO Journal 5(4), 823–826 (1986)Google Scholar
  11. 11.
    Galgonek, J., Hoksza, D., Skopal, T.: SProt: sphere-based protein structure similarity algorithm. BMC Proteome Science 9(suppl. 1) S20 (2011)Google Scholar
  12. 12.
    Reinders, J.: Intel threading building blocks: outfitting C++ for multi-core processor parallelism. O’Reilly Media, Inc. (2007)Google Scholar
  13. 13.
    Chandonia, J.M.M., Hon, G., Walker, N.S., Lo Conte, L., Koehl, P., Levitt, M., Brenner, S.E.: The ASTRAL Compendium in 2004. Nucleic Acids Res. 32(Database issue), D189–D192 (2004)Google Scholar
  14. 14.
    Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247(4), 536–540 (1995)Google Scholar
  15. 15.
    Konc, J., Janezic, D.: ProBiS: a web server for detection of structurally similar protein binding sites. Nucleic Acids Res. 38(Web-Server-Issue), 436–440 (2010)Google Scholar
  16. 16.
    Zhang, Z.H., Bharatham, K., Sherman, W.A., Mihalek, I.: deconSTRUCT: general purpose protein database search on the substructure level. Nucleic Acids Res. 38(Web-Server-Issue), 590–594 (2010)Google Scholar
  17. 17.
    Krissinel, E., Henrick, K.: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D 60(12 pt. 1), 2256–2268 (2004)Google Scholar
  18. 18.
    Gibrat, J.F., Madej, T., Bryant, S.H.: Surprising similarities in structure comparison. Current Opinion in Structural Biology 6(3), 377–385 (1996)CrossRefGoogle Scholar
  19. 19.
    Lo, W.C., Lee, C.Y., Lee, C.C., Lyu, P.C.: iSARST: an integrated SARST web server for rapid protein structural similarity searches. Nucleic Acids Research 37(Web-Server-Issue), 545–551 (2009)Google Scholar
  20. 20.
    Yang, J.M.M., Tung, C.H.H.: Protein structure database search and evolutionary classification. Nucleic Acids Research 34(13), 3646–3659 (2006)CrossRefGoogle Scholar
  21. 21.
    Holm, L., Rosenström, P.: Dali server: conservation mapping in 3D. Nucleic Acids Research 38(Web-Server-Issue), 545–549 (2010)Google Scholar
  22. 22.
    Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jakub Galgonek
    • 1
  • Tomáš Skopal
    • 1
  • David Hoksza
    • 1
  1. 1.Departement of Software EngineeringCharles University in PraguePraha 1Czech Republic

Personalised recommendations