Skip to main content

Path Delays in the Neutral Atmosphere

  • Chapter
  • First Online:
Atmospheric Effects in Space Geodesy

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

This part describes the effects of the troposphere—strictly speaking the neutral atmosphere—on the propagation delay of space geodetic signals. A theoretical description of this tropospheric propagation delay is given as well as strategies for correcting for it in the data analysis of the space geodetic observations. The differences between the tropospheric effects for microwave techniques, like the Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI), and those for optical techniques, like Satellite Laser Ranging (SLR), are discussed. Usually, residual tropospheric delays are estimated in the data analysis, and the parameterization needed to do so is presented. Other possibilities of correcting for the tropospheric delays are their calculation by ray-tracing through the fields of numerical weather models and by utilizing water vapor radiometer measurements. Finally, we shortly discuss how space geodetic techniques can be used in atmospheric analysis in meteorology and climatology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • J. B. Abshire and C. S. Gardner. Atmospheric refractivity corrections in Satellite Laser Ranging. IEEE Trans. Geosc. Rem. Sens., GE-23(4):414–425, 1985. doi:10.1109/TGRS.1985.289431.

    Google Scholar 

  • C. Alber, R. Ware, C. Rocken, and J. Braun. Obtaining single path delays from GPS double differences. Geoph. Res. Lett., 27:2661–2664, 2000. doi: 10.1029/2000GL011525.

    Google Scholar 

  • M. Alizadeh, D. D. Wijaya, T. Hobiger, R. Weber, and H. Schuh. Ionospheric effects on microwave signals. In Atmospheric Effects in Space Geodesy. Springer-Verlag, 2013. this book.

    Google Scholar 

  • T. Alkhalifah and S. Fomel. Implementing the fast marching Eikonal solver: Spherical versus cartesian coordinates. Geophys. Prospect., 49:165 178, 2001. doi: 10.1046/j.1365-2478.2001.00245.x.

  • J. I. H. Askne and E. R. Westwater. A review of ground-based remote sensing of temperature and moisture by passive microwave radiometers. IEEE Trans. Geosci. Remote Sensing, GE-24 (3):340–352, 1986. doi: 10.1109/TGRS.1986.289591.

  • B. R. Bean and G. D. Thayer. CRPL exponential reference atmosphere. Technical report, U.S. Government Printing Office, 1959. URL http://digicoll.manoa.hawaii.edu/techreports/PDF/NBS4.pdf.

  • P. L. Bender and J. C. Owens. Correction of optical distance measurements for the fluctuating atmospheric index of refraction. J. Geophys. Res., 70:2461, 1965. doi: 10.1029/JZ070i010p02461.

    Google Scholar 

  • L. Bengtsson, S. Hagemann, and K. I. Hodges. Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109:D11111, 2004. doi: 10.1029/2004JD004536.

  • H. Berg. Allgemeine Meteorologie. Dümmlers Verlag, Bonn, 1948.

    Google Scholar 

  • M. Bevis, S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorology, 33(3):379–386, 1994. doi:10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.

    Google Scholar 

  • M. Bevis, S. Businger, T.A. Herring, C. Rocken, R.A. Anthes, and R.H. Ware. GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97(D14):15787–801, 1992. ISSN 0148–0227. doi: 10.1029/92JD01517.

    Google Scholar 

  • J. Böhm. Troposphärische Laufzeitverzögerungen in der VLBI. PhD thesis, Technische Universität Wien, 2004.

    Google Scholar 

  • J. Böhm, R. Heinkelmann, and H. Schuh. Short Note: A global model of pressure and temperature for geodetic applications.J. Geodesy, 81(10):679–683, OCT 2007. doi:10.1007/s00190-007-0135-3.

  • J. Böhm, R. Heinkelmann, and H. Schuh. Neutral atmosphere delays: Empirical models versus discrete time series from numerical weather models. In H. Drewes, editor, Geodetic Reference Frames - IAG Symposium, volume 134 of IAG Symposia, pages 317–321, Munich, Germany, 2009a. doi:10.1007/978-3-642-00860-3_49.

    Google Scholar 

  • J. Böhm, J. Kouba, and H. Schuh. Forecast Vienna mapping functions 1 for real-time analysis of space geodetic observations. J. Geodesy, 83(5), 2009b. doi: 10.1007/s00190-008-0216-y.

  • J. Böhm, P.J. Mendes Cerveira, H. Schuh, and P. Tregoning. The impact of mapping functions for the neutral atmosphere based on numerical weather models in GPS data analysis. In P. Tregoning and C. Rizos, editors, Dynamic Planet, volume 130 of IAG Symposia Series, pages 837–843. Springer-Verlag, 2007. doi:10.1007/978-3-540-49350-1_118.

    Google Scholar 

  • J. Böhm, A. Niell, P. Tregoning, and H. Schuh. Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys. Res. Lett., 33:L07304, 2006a. doi: 10.1029/2005GL025546.

  • J. Böhm, D. Salstein, M. Alizadeh, and D. D. Wijaya. Geodetic and atmospheric background. In Atmospheric effects in space geodesy. Springer-Verlag, Berlin, Germany, 2013. this book.

    Google Scholar 

  • J. Böhm and H. Schuh. Vienna mapping functions. In Proc. 16th Working Meeting on European VLBI for Geodesy and Astrometry, page 131 143, Leipzig, Germany, 2003. Verlag des Bundesamtes für Kartographie und Geodäsie.

    Google Scholar 

  • J. Böhm and H. Schuh. Vienna mapping functions in VLBI analyses. Geophys. Res. Lett., 31:L01603, 2004. doi: 10.1029/2003GL018984.

  • J. Böhm and H. Schuh. Tropospheric gradients from the ECMWF in VLBI analysis. J. Geodesy, 81(6–8):409–421, 2007. doi: 10.1007/s00190-006-0126-9.

    Google Scholar 

  • J. Böhm, B. Werl, and H. Schuh. Troposphere mapping functions for GPS and very long baseline interferometry from european centre for medium-range weather forecasts operational analysis data. J. Geophys. Res., 111:B02406, 2006b. doi:10.1029/2005JB003629.

  • M. Born and E. Wolf. Principles of optics. Cambridge Univ. Press, New York, 7\(^{{\rm th}}\) edition, 1999.

    Google Scholar 

  • A. V. Bosisio and C. Mallet. Infuence of cloud temperature on brightness temperature and consequences for water retrieval. Radio Sci., 33(4):929–939, 1998. doi: 10.1029/98RS00949.

    Google Scholar 

  • G. Boudouris. On the index of refraction of air, the absorption and dispersion of centimeter waves in gases. J. Res. Natl. Bur. Stand., 67D:631–684, 1963.

    Google Scholar 

  • K. G. Budden. The propagation of radio waves. Cambridge University Press, New York, 1 edition, 1985.

    Google Scholar 

  • V. Cerveny. Seismic ray theory. Cambridge University Press, New York, 2005.

    Google Scholar 

  • V. Cerveny, L. Klimes, and I. Psencik. Complete seismic-ray tracing in three-dimensional structures. In D. J. Doornbos, editor, Seismological algorithms, page 89–168. Academic Press, New York, 1988.

    Google Scholar 

  • C. Champollion, F. Mason, M.-N. Bouin, A. Walpersdorf, E. Doerflinger, O. Bock, and J. van Baelen. GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment. Atmospheric Research, 74:253–274, 2005. doi: 10.1016/j.atmosres.2004.04.003.

    Google Scholar 

  • C.C. Chao. The troposphere calibration model for mariner mars 1971. Technical Report 32–1587, NASA JPL, Pasadena, CA, 1974.

    Google Scholar 

  • G. Chen and T. A. Herring. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res., 102(B9):20489–20502, 1997. doi: 10.1029/97JB01739.

    Google Scholar 

  • P. E. Ciddor. Refractive index of air: new equations for the visible and near infrared. Appl. Opt., 35(9):1566–1573, 1996. doi: 10.1364/AO.35.001566.

  • P. E. Ciddor and R. J. Hill. The refractive index of air \(2\). Group index. Appl. Opt., 38:1663–1667, 1999. doi: 10.1364/AO.38.001663.

  • G. d’Auria, F. S. Marzano, and U. Merlo. Model for estimating the refractive-index stucture constant in clear-air intermittent turbulence. Applied Optics, 32:2674–2680, 1993. doi:10.1364/AO.32.002674.

    Google Scholar 

  • J. L. Davis, G. Elgered, A. E. Niell, and C. E. Kuehn. Ground-based measurement of gradients in the “wet” radio refractivity of air. Radio Sci., 28(6):1003–1018, 1993. doi: 10.1029/93RS01917.

    Google Scholar 

  • J. L. Davis, T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 20(6):1593–1607, 1985. doi: 10.1029/RS020i006p01593.

    Google Scholar 

  • J.L. Davis. Atmospheric propagation effects on radio interferometry. Technical Report AFGL-TR-86-0243, Scientific Report No. 1, Air Force Geophysics Laboratory, 1986.

    Google Scholar 

  • P. Debye. Polar Molecules. Dover, New York, 1929.

    Google Scholar 

  • B. Edlén. The refractive index of air. Metrologia, 2(2):71–80, 1966. doi: 10.1088/0026-1394/2/2/002.

    Google Scholar 

  • G. Elgered. Tropospheric radio-path delay from ground based microwave radiometry. In M. Janssen, editor, Atmospheric Remote Sensing by Microwave Radiometry, chapter 5. Wiley & Sons, Inc., N.Y., 1993.

    Google Scholar 

  • G. Elgered, J. L. Davis, T. A. Herring, and I. I. Shapiro. Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay. J. Geophys. Res., 95(B4):6541–6555, 1991. doi:10.1029/90JB00834.

    Google Scholar 

  • G. Elgered, H.-P. Plag, H. van der Marel, S. Barlag, and J. Nash, editors. Exploitation of ground-based GPS for operational numerical weather prediction and climate applications. COST action 716: Final Report. European Union, Brussels, Belgium, 2005.

    Google Scholar 

  • T. R. Emardson and H. J. P. Derks. On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere. Meteorol. Appl., 7(1):61–68, 2000. doi: 10.1017/S1350482700001377.

    Google Scholar 

  • T. R. Emardson, G. Elgered, and J. M. Johansson. External atmospheric corrections in geodetic very-long-baseline interferometry. J. Geodesy, 73:375–383, 1999. doi: 10.1007/s001900050256.

    Google Scholar 

  • L. Essen and K. D. Froome. The refractive indices and dielectric constants of air and its principal constituents at 24,000 Mc/s. Proc. Phys Soc. B, 64(10):862–875, 1951. doi: 10.1088/0370-1301/64/10/303.

  • A. Flores, G. Ruffini, and A. Rius. 4D tropospheric tomography using GPS slant delays. Ann. Geophysicae, pages 223–234, 2000. doi: 10.1007/s00585-000-0223-7.

  • U. Fölsche. Tropospheric water vapor imaging by combination of spaceborne and ground-based GNSS sounding data. PhD thesis, Univ. Graz, Graz, Austria, 1999.

    Google Scholar 

  • P. J. Fowler. Finite-difference solutions of the 3d eikonal equation in spherical coordinates. In Proc. 64th SEG meeting, pages 1394–1397, Los Angeles, USA, 1994.

    Google Scholar 

  • C. S. Gardner. Effects of horizontal refractivity gradients on the accuracy of laser ranging to satellites. Radio Sci., 11(12):1037–1044, 1976. doi: 10.1029/RS011i012p01037.

    Google Scholar 

  • P. Gegout, R. Biancale, and L. Soudarin. Adaptive mapping functions to the azimuthal anisotropy of the neutral-atmosphere. J. Geodesy, 85(10):661–677, 2011. doi: 10.1007/s00190-011-0474-y.

    Google Scholar 

  • L. Gradinarsky and P. Jarlemark. Ground-based GPS tomography of water vapor: Analysis of simulated and real data. J. Meteorol. Soc. Japan, 82:551–560, 2004. doi: 10.2151/jmsj.2004.551.

  • L. P. Gradinarsky, J. M. Johansson, H. R. Bouma, H.-G. Scherneck, and G. Elgered. Climate monitoring using GPS. Physics and Chemistry of the Earth, 27:335–340, 2002. doi: 10.1016/S1474-7065(02)00009-8.

  • B. A. Greene and T. A. Herring. Multiple wavelength laser ranging. In The 6th International Workshop on Laser Ranging Instrumentation, 1986.

    Google Scholar 

  • S. I. Gutman and S. G. Benjamin. The role of ground-based GPS meteorological observations in numerical weather prediction. GPS Solutions, 4(4):16–24, 2001. doi: 10.1007/PL00012860.

  • R. Heinkelmann, J. Böhm, H. Schuh, S. Bolotin, G. Engelhardt, D. S. MacMillan, M. Negusini, E. Skurikhina, V. Tesmer, and O. Titov. Combination of long time-series of troposphere zenith delays observed by VLBI. J. Geodesy, 81(6–8):483–501, 2007. doi:10.1007/s00190-007-0147-z.

    Google Scholar 

  • T. A. Herring. Modeling atmospheric delays in the analysis of space geodetic data. In J.C. De Munk and T. A. Spoelstra, editors, Symposium on Refraction of Transatmospheric Signals in Geodesy, pages 157–164. Netherlands Geod. Comm., Delft, 1992.

    Google Scholar 

  • T. A. Herring, J. L. Davis, and I. I. Shapiro. Geodesy by radio interferometry: The application of Kalman filtering to the analysis of Very Long Baseline Interferometry data. J. Geophys. Res., 95(B8):12,561–12,581, 1990. 90JB00683.

    Google Scholar 

  • R. J. Hill, R. S. Lawrence, and J. T. Priestley. Theoretical and calculational aspects of the radio refractive index of water vapor. Radio Sci., 17(5):1251–1257, 1982. doi: 10.1029/RS017i005p01251.

    Google Scholar 

  • T. Hobiger, R. Ichikawa, Y. Koyama, and T. Kondo. Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models. J. Geophys. Res., 113:D20302, 2008. doi: 10.1029/2008JD010503.

  • H.S. Hopfield. Two-quartic tropospheric refractivity profile for correcting satellite data. J. Geophys. Res., 74:4487–4499, 1969. doi: 10.1029/JC074i018p04487.

    Google Scholar 

  • C. G. Hulley. Improved Refraction Corrections for Satellite Laser Ranging (SLR) by Ray Tracing through Meteorological Data. PhD thesis, University of Maryland, 2007.

    Google Scholar 

  • G. C. Hulley and E. C. Pavlis. A ray-tracing technique for improving Satellite Laser Ranging atmospheric delay corrections, including the effects of horizontal refractivity gradients. J. Geophys. Res., 112(B06417):1–19, 2007. doi: 10.1029/2006JB004834.

    Google Scholar 

  • I. Ifadis. The atmospheric delay of radio waves: Modeling the elevation dependence on a global scale. Technical Report 38L, School Electrical Computer Engineering, Chalmers University of Technology, Göteborg, Sweden, 1986. ISBN:99-0605353-4.

    Google Scholar 

  • K. Iizuka. Engineering optics, volume 35 of Springer Series in Optical Sciences. Springer-Verlag, New York, 3rd edition, 2008.

    Google Scholar 

  • A. Ishimaru. Wave Propagation and Scattering in Random Media. Academic Press, New York, 1978.

    Google Scholar 

  • J. D. Jackson. Classical electrodynamics. Wiley & Sons, Inc., N.Y., 3rd edition, 1998.

    Google Scholar 

  • P. O. J. Jarlemark. Analysis of temporal and spatial variations in atmospheric water vapor using microwave radiometry. PhD Thesis, Tech. Rep. 308, School Electrical Computer Engineering, Chalmers Univ. Tech., 1997. Göteborg, Sweden.

    Google Scholar 

  • H. Jeske. Meteorological optics and radiometeorology. In Landolt-Börnstein, editor, Numerical data and functional relationships in science and technology, volume 4b of Group V. Springer, 1988.

    Google Scholar 

  • S. Jin, J.-U. Park, J.-H. Cho, and P.-H. Park. Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications. J. Geophys. Res., 112:D09110, 2007. doi: 10.1029/2006JD007772.

  • A. Karabatić, R. Weber, and T. Haiden. Near real-time estimation of tropospheric water vapour content from ground based GNSS data and its potential contribution to weather now-casting in Austria. Adv. Space Res., 47(10):1691–1703, 2011. doi: 10.1016/j.asr.2010.10.028.

  • A. N. Kolmogorov. Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32(1):16–18, 1941a. English translation in: Proc R. Soc. Lond. A, 434:15–17.

    Google Scholar 

  • A. N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30(4):299–303, 1941b. English translation in: Proc R. Soc. Lond. A, 434:9–13.

    Google Scholar 

  • J. Kouba. Implementation and testing of the gridded vienna mapping function 1 (VMF1). J. Geodesy, 82(4–5):193–205, 2008. doi: 10.1007/s00190-007-0170-0.

  • C. E. Kuehn, W. E. Himwich, T. A. Clark, and C. Ma. An evaluation of water vapor radiometer data for calibration of the wet path delay in very long baseline interferometry experiments. Radio Sci., 26(6):1381–1391, 1991. doi: 10.1029/91RS02020.

    Google Scholar 

  • R.F. Leandro, M.C. Santos, and R.B. Langley. UNB neutral atmosphere models: Development and performance. In National Technical Meeting of The Institute of Navigation, Monterey, California, 18–20 January 2006, pages 564–573, 2006.

    Google Scholar 

  • H. J. Liebe. An updated model for millimeter wave propagation in moist air. Radio Sci., 20(5): 1069–1089, 1985. doi:10.1029/RS020i005p0106.

  • H. J. Liebe. MPMan atmospheric millimeter-wave propagation model. Int. J. Infrared Millimeter Waves, 10(6): 631–650, 1989. doi: 10.1007/BF01009565.

    Google Scholar 

  • H. J. Liebe, G. A. Hufford, and M. G. Cotton. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. In Proc. AGARD 52d Specialists Meeting of the Electromagnetic Wave Propagation Panel, pages 3.1–3.10, Palam de Mallorca, Spain, 1993. AGARD.

    Google Scholar 

  • D. S. MacMillan. Atmospheric gradients from very long baseline interferometry observations. Geophys. Res. Lett., 22(9):1041–1044, 1995. doi: 10.1029/95GL00887.

    Google Scholar 

  • D. S. MacMillan and C. Ma. Evaluation of very long baseline interferometry atmospheric modeling improvements. J. Geophys. Res., 99(B1):637–651, 1994. doi: 10.1029/93JB02162.

    Google Scholar 

  • D. S. MacMillan and C. Ma. Atmospheric gradients and the VLBI terrestrial and celestial reference frames. Geophys. Res. Lett., 24(4):453–456, 1997. doi:10.1029/97GL00143.

  • J.W. Marini. Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Science, 7(2):223–231, 1972. doi: 10.1029/RS007i002p00223.

    Google Scholar 

  • J.W. Marini and C.W. Murray. Correction of laser range tracking data for atmospheric refraction at elevation angles above 10 degrees. Technical Report X-591-73-351, NASA, 1973.

    Google Scholar 

  • V. B. Mendes. Modeling of the neutral-atmosphere propagation delay in radiometric space techniques. PhD dissertation, Department of Geodesy and Geomatics Engineering Tech. Report No. 199, University of New Brunswick, Fredericton, New Brunswick, Canada, 1999. General definitions of IWV, relative humidity etc.

    Google Scholar 

  • V. B. Mendes and R. Langley. Tropospheric zenith delay prediction accuracy for airborne GPS high-precision positioning. In Proc. of ION GPS-98, pages 337–347, Nashville, TN, USA, 1998.

    Google Scholar 

  • V. B. Mendes and E. C. Pavlis. High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett., 31, 2004. doi: 10.1029/2004GL020308.L14602.

  • V. B. Mendes, G. Prates, E. C. Pavlis, D. E. Pavlis, and R. B. Langley. Improved mapping functions for atmospheric refraction correction in SLR. Geophys. Res. Lett., 29(10):10.1029-10.1032, 2002. doi:10.1029/2001GL014394.

  • V. Nafisi, M. Madzak, J. Böhm, A. A. Ardalan, and H. Schuh. Ray-traced tropospheric delays in VLBI analysis. Radio Sci., 47:RS2020, 2012a. doi: 10.1029/2011RS004918.

  • V. Nafisi, L. Urquhart, M. C. Santos, F. G. Nievinski, J. Böhm, D. D. Wijaya, H. Schuh, A. A. Ardalan, T. Hobiger, R. Ichikawa, F. Zus, J. Wickert, and P. Gegout. Comparison of ray-tracing packages for troposphere delays. IEEE Trans. Geosci. Remote Sensing, 50(2):469–481, 2012b. doi:10.1109/TGRS.2011.2160952.

  • A. Niell. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res., 101(B2):3227–3246, 1996. doi: 10.1029/95JB03048.

    Google Scholar 

  • A. E. Niell. Improved atmospheric mapping functions for VLBI and GPS. Earth Planets Space, 52:699–702, 2000.

    Google Scholar 

  • A. E. Niell. Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys. Chem. Earth (A), 26:475–480, 2001. doi: 10.1016/S1464-1895(01)00087-4.

    Google Scholar 

  • A. E. Niell, A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Upham. Comparison of measurements of atmospheric wet delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI. J. Atmos. Oceanic Technol., 18(6):830–850, 2001. doi:10.1175/1520-0426(2001)018<0830:COMOAW>2.0.CO;2.

    Google Scholar 

  • A. E. Niell. Interaction of atmosphere modeling and vlbi analysis strategy. In D. Behrend and K. Baver, editors, International VLBI Service for Geodesy and Astrometry 2006 General Meeting Proceedings, number NASA/CP-2006-214140, 2006.

    Google Scholar 

  • F. G. Nievinski. Ray-tracing options to mitigate the neutral atmosphere delay in GPS. Master’s thesis, University of New Brunswick, Department of Geodesy and Geomatics Engineering, 2009. URL http://hdl.handle.net/1882/1050 Technical Report No. 262.

  • T. Nilsson. Improving GNSS tropospheric tomography by better knowledge of atmospheric turbulence. In Proc. 1:st Colloquium Scientific and Fundamental Aspects of the Galileo Programme, Toulouse, France, 2007. European Space Agency.

    Google Scholar 

  • T. Nilsson and G. Elgered. Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data. J. Geophys. Res., 113:D19101, 2008. doi: 10.1029/2008JD010110.

  • T. Nilsson and L. Gradinarsky. Water vapor tomography using GPS phase observations: Simulaton results. IEEE Trans. Geosci. Remote Sensing, 44(10):2927–2941, 2006. doi:10.1109/TGRS.2006.877755.

    Google Scholar 

  • T. Nilsson, L. Gradinarsky, and G. Elgered. Correlations between slant wet delays measured by microwave radiometry. IEEE Trans. Geosci. Remote Sensing, 43(5):1028–1035, 2005. doi:10.1109/TGRS.2004.840659.

    Google Scholar 

  • T. Nilsson, L. Gradinarsky, and G. Elgered. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment. Tellus A, 59:574–682, 2007. doi: 10.1111/j.1600-0870.2007.00247.x.

  • T. Nilsson and R. Haas. Impact of atmospheric turbulence on geodetic very long baseline interferometry. J. Geophys. Res., 115:B03407, 2010. doi: 10.1029/2009JB006579.

  • T. Ning and G. Elgered. Trends in the atmospheric water vapor content from ground-based GPS: The impact of the elevation cutoff angle. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5:744–751, 2012. doi: 10.1109/JSTARS.2012.2191392.

    Google Scholar 

  • A. Nothnagel, J. Cho, A. Roy, and R. Haas. WVR calibration applied to European VLBI observing sessions. In P. Tregoning and C. Rizos, editors, Dynamic Planet, volume 130 of IAG Symposia, pages 152–157. Springer, Berlin, Germany, 2007. doi:10.1007/978-3-540-49350-1_24

    Google Scholar 

  • J. C. Owens. Optical refractive index of air: Dependence on pressure, temperature and composition. Appl. Opt., 6(1):51–59, 1967. doi: 10.1364/AO.6.000051.

    Google Scholar 

  • T. K. Pany. Development and application of tropospheric GPS slant delay models based on numerical weather prediction models and turbulence theory. PhD thesis, Institute of Engineering Geodesy and Measurements Systems, Graz University of Technology, 2002.

    Google Scholar 

  • D. Perler, A. Geiger, and F. Hurter. 4D GPS water vapor tomography: new parameterized approaches. J. Geodesy, 85(8):539–550, 2011. doi: 10.1007/s00190-011-0454-2.

    Google Scholar 

  • P. Poli, P. Moll, F. Rabier, G. Desroziers, B. Chapnik, L. Berre, S. B. Healy, E. Andersson, and F.-Z. El Guelai. Forecast impact studies of zenith total delay data from European near real-time GPS stations in météo france 4DVAR. J. Geophys. Res., 112:D06114, 2007. doi:10.1029/2006JD007430.

  • M. T. Prilepin. Light modulating method for determining average index of refraction of air along a line. Tr. Tsentr. Nauchno-Issled. Inst. Geod. Aero. Kartog., 114:127, 1957.

    Google Scholar 

  • L. F. Richardson. The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. Lond. A, 97(686):354–373, 1920.

    Google Scholar 

  • P. W. Rosenkranz. Water vapor microwave continuum absorption: a comparison of measurements and models. Radio Sci., 33(4):919–928, 1998. doi: 10.1029/98RS01182.

  • M. Rothacher, T.A. Springer, S. Schaer, and G. Beutler. Processing strategies for regional GPS networks. In F.K. Brunner, editor, Advances in Positioning and Reference Frames, volume 118 of IAG Symposia Series, pages 93–100. Springer-Verlag, 1998.

    Google Scholar 

  • J. M. Rüeger. Refractive index formulae for radio waves. In Proc. XXII FIG International Congress, Washington DC, USA, 2002a. FIG. URL http://www.fig.net/pub/fig_2002/procmain.htm.

  • J. M. Rüeger. Refractive indices of light, infrared and radio waves in the atmosphere. Technical report, UNISURV S-68, School of Surveying and Spatial Information Systems, The University of New South Wales, Australia, 2002b.

    Google Scholar 

  • J. Saastamoinen. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In S. W. Henriksen et al., editors, The Use of Artificial Satellites for Geodesy, volume 15, pages 247–251, AGU, Washington, D.C., 1972b.

    Google Scholar 

  • J. Saastamoinen. Introduction to practical computation of astronomical refraction. Bull. Géod., 106:383–397, 1972a. doi: 10.1007/BF02522047.

  • T. M. Scheve and C. T. Swift. Profiling atmospheric water vapor with a K-band spectral radiometer. IEEE Trans. Geosci. Remote Sensing, 37(3):1719–1729, 1999. doi:10.1109/36.763294.

    Google Scholar 

  • W. A. Schneider, Jr. Robust, efficient upwind finite-difference traveltime calculations in 3d. In Proc. 63rd SEG meeting, pages 1036–1039, Washington, DC, USA, 1993.

    Google Scholar 

  • S. D. Schubert, J. Pjaendtner, and R. Rood. An assimilated data set for earth science applications. Bull. American. Meteo. Soc., 74:2331–2342, 1993. doi: 10.1175/1520-0477(1993)074<2331:AADFES>2.0.CO;2.

    Google Scholar 

  • K. Snajdrova, J. Böhm, P. Willis, R. Haas, and H. Schuh. Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J. Geodesy, 79(10–11):613–623, 2006. doi: 10.1007/s00190-005-0010-z.

    Google Scholar 

  • F. S. Solheim, J. Vivekanandan, R. H. Ware, and C. Rocken. Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates. J. Geophys. Res., 104(D8):9663–9670, 1999. doi: 10.1029/1999JD900095.

    Google Scholar 

  • P. Steigenberger, J. Böhm, and V. Tesmer. Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J. Geodesy, 83:943–951, 2009. doi:10.1007/s00190-009-0311-8.

  • P. Steigenberger, V. Tesmer, M. Krügel, D. Thaller, R. Schmid, S. Vey, and M. Rothacher. Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients. J. Geodesy, 81(6–8):503–514, 2007. doi:10.1007/s00190-006-0124-y.

    Google Scholar 

  • V. I. Tatarskii. The Effects of the Turbulent Atmosphere on Wave Propagation. Israel Program for Scientific Translations, Jerusalem, 1971.

    Google Scholar 

  • G. I. Taylor. The spectrum of turbulence. Proc. Roy. Soc. Lond. A, 164(919):476–490, 1938. URL http://www.jstor.org/stable/97077.

  • K. Teke, J. Böhm, T. Nilsson, H. Schuh, P. Steigenberger, R. Dach, R. Heinkelmann, P. Willis, R. Haas, S. Garcia-Espada, T. Hobiger, R. Ichikawa, and S. Shimizu. Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J. Geodesy, 85(7):395–413, 2011. doi:10.1007/s00190-010-0434-y.

    Google Scholar 

  • V. Tesmer, J. Böhm, R. Heinkelmann, and H. Schuh. Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J. Geodesy, 81(6–8): 409–421, 2007. doi:10.1007/s00190-006-0126-9.

  • G. D. Thayer. A rapid and accurate ray tracing algorithm for a horizontally stratified atmosphere. Radio Sci., 1(2):249–252, 1967.

    Google Scholar 

  • G. D. Thayer. An improved equation for the radio refractive index of air. Radio Sci., 9(10):803–807, 1974. doi: 10.1029/RS009i010p00803.

    Google Scholar 

  • R. N. Thessin. Atmospheric signal delay affecting GPS measurements made by space vehicles during launch, orbit and reentry. Master’s thesis, Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, Cambridge, Mass., 2005. URL http://hdl.handle.net/1721.1/33211.

  • D. M. Tralli and S. M. Lichten. Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. Bull. Geod., 64:127–159, 1990. doi: 10.1007/BF02520642.

    Google Scholar 

  • P. Tregoning and T.A. Herring. Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys. Res. Lett., 33(L23303), 2006. doi:10.1029/2006GL027706.

  • K. E. Trenberth, A. Dai, R.M. Rasmussen, and D.B. Parsons. The changing character of precipitation. Bull. Amer. Meteor. Soc., 84(9):12051217, 2003. doi:10.1175/BAMS-84-9-1205.

    Google Scholar 

  • R. N. Treuhaft and G. E. Lanyi. The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci., 22(2):251–265, 1987. doi: 10.1029/RS022i002p00251.

  • M. Troller, A. Geiger, E. Brockmann, J.-M. Bettems, B. Bürki, and H.-G. Kahle. Tomographic determination of the spatial distribution of water vapor using GPS observations. Adv. Space Res., 37(12):2211–2217, 2006. doi: 10.1016/j.asr.2005.07.002.

  • H. Vedel. Targeting optimal use of GPS humidity measurements in meteorology: Final report of the TOUGH project, 2006. URL http://web.dmi.dk/pub/tough/.

  • H. Vedel and X.-Y. Huang. Impact of ground based GPS data on numerical weather prediction. J. Met. Soc. Japan, 82(1B):459–472, 2004. doi:10.2151/jmsj.2004.459.

    Google Scholar 

  • J. Wang, L. Zhang, and A. Dai. Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J. Geophys. Res., 110(D21101), 2005. doi:10.1029/2005JD006215.

  • R. Ware, C. Rocken, F. Solheim, T. van Hove, C. Alber, and J. Johnson. Pointed water vapor radiometer corrections for accurate global positioning system surveying. Geophys. Res. Lett., 20(23): 2635–2638, 1993. doi: 10.1029/93GL02936.

    Google Scholar 

  • E. R. Westwater, M. J. Falls, and I. A. Popa-Fotin. Ground-based microwave radiometric observations of precipitable water vapor: A comparison with ground truth from two radiosonde observing systems. J. Atmos. Oceanic Technol., 6(4):724–730, 1989. doi:10.1175/1520-0426(1989)006.

  • A. D. Wheelon. Electromagnetic scintillation: Geometrical optics. Cambridge University Press, 2001.

    Google Scholar 

  • D. D. Wijaya. Atmospheric correction formulae for space geodetic techniques. PhD thesis, Graz University of Technology, Institute of Engineering Geodesy and Measurements Systems, Graz, Austria, 2010.

    Google Scholar 

  • D. D. Wijaya, J. Böhm, M. Karbon, and H. Schuh. Atmospheric pressure loading. In Atmospheric Effects in Space Geodesy. Springer-Verlag, 2013. this book.

    Google Scholar 

  • D.D. Wijaya and F.K. Brunner. Atmospheric range correction for two-frequency SLR measurements. J. Geodesy, 85(9):623–635, 2011. doi: 10.1007/s00190-011-0469-8.

    Google Scholar 

  • S.-C. Wu. Optimum frequencies of a passive microwave radiometer for tropospheric path-length correction. IEEE Trans. Antennas Propagat., 27:233–239, 1979. doi:10.1109/TAP.1979.1142066.

Download references

Acknowledgments

First of all we would like to thank the reviewer, Gunnar Elgered, for providing very valuable suggestions to improve the quality of this part of the book. We are grateful for the financial support from the German Science Foundation (DFG, SCHU 1103/3-2), and from the Austrian Science Fund (FWF, P20902-N10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nilsson, T., Böhm, J., Wijaya, D.D., Tresch, A., Nafisi, V., Schuh, H. (2013). Path Delays in the Neutral Atmosphere. In: Böhm, J., Schuh, H. (eds) Atmospheric Effects in Space Geodesy. Springer Atmospheric Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36932-2_3

Download citation

Publish with us

Policies and ethics