Abstract
This part describes the effects of the troposphere—strictly speaking the neutral atmosphere—on the propagation delay of space geodetic signals. A theoretical description of this tropospheric propagation delay is given as well as strategies for correcting for it in the data analysis of the space geodetic observations. The differences between the tropospheric effects for microwave techniques, like the Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI), and those for optical techniques, like Satellite Laser Ranging (SLR), are discussed. Usually, residual tropospheric delays are estimated in the data analysis, and the parameterization needed to do so is presented. Other possibilities of correcting for the tropospheric delays are their calculation by ray-tracing through the fields of numerical weather models and by utilizing water vapor radiometer measurements. Finally, we shortly discuss how space geodetic techniques can be used in atmospheric analysis in meteorology and climatology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
J. B. Abshire and C. S. Gardner. Atmospheric refractivity corrections in Satellite Laser Ranging. IEEE Trans. Geosc. Rem. Sens., GE-23(4):414–425, 1985. doi:10.1109/TGRS.1985.289431.
C. Alber, R. Ware, C. Rocken, and J. Braun. Obtaining single path delays from GPS double differences. Geoph. Res. Lett., 27:2661–2664, 2000. doi: 10.1029/2000GL011525.
M. Alizadeh, D. D. Wijaya, T. Hobiger, R. Weber, and H. Schuh. Ionospheric effects on microwave signals. In Atmospheric Effects in Space Geodesy. Springer-Verlag, 2013. this book.
T. Alkhalifah and S. Fomel. Implementing the fast marching Eikonal solver: Spherical versus cartesian coordinates. Geophys. Prospect., 49:165 178, 2001. doi: 10.1046/j.1365-2478.2001.00245.x.
J. I. H. Askne and E. R. Westwater. A review of ground-based remote sensing of temperature and moisture by passive microwave radiometers. IEEE Trans. Geosci. Remote Sensing, GE-24 (3):340–352, 1986. doi: 10.1109/TGRS.1986.289591.
B. R. Bean and G. D. Thayer. CRPL exponential reference atmosphere. Technical report, U.S. Government Printing Office, 1959. URL http://digicoll.manoa.hawaii.edu/techreports/PDF/NBS4.pdf.
P. L. Bender and J. C. Owens. Correction of optical distance measurements for the fluctuating atmospheric index of refraction. J. Geophys. Res., 70:2461, 1965. doi: 10.1029/JZ070i010p02461.
L. Bengtsson, S. Hagemann, and K. I. Hodges. Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109:D11111, 2004. doi: 10.1029/2004JD004536.
H. Berg. Allgemeine Meteorologie. Dümmlers Verlag, Bonn, 1948.
M. Bevis, S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorology, 33(3):379–386, 1994. doi:10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.
M. Bevis, S. Businger, T.A. Herring, C. Rocken, R.A. Anthes, and R.H. Ware. GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97(D14):15787–801, 1992. ISSN 0148–0227. doi: 10.1029/92JD01517.
J. Böhm. Troposphärische Laufzeitverzögerungen in der VLBI. PhD thesis, Technische Universität Wien, 2004.
J. Böhm, R. Heinkelmann, and H. Schuh. Short Note: A global model of pressure and temperature for geodetic applications.J. Geodesy, 81(10):679–683, OCT 2007. doi:10.1007/s00190-007-0135-3.
J. Böhm, R. Heinkelmann, and H. Schuh. Neutral atmosphere delays: Empirical models versus discrete time series from numerical weather models. In H. Drewes, editor, Geodetic Reference Frames - IAG Symposium, volume 134 of IAG Symposia, pages 317–321, Munich, Germany, 2009a. doi:10.1007/978-3-642-00860-3_49.
J. Böhm, J. Kouba, and H. Schuh. Forecast Vienna mapping functions 1 for real-time analysis of space geodetic observations. J. Geodesy, 83(5), 2009b. doi: 10.1007/s00190-008-0216-y.
J. Böhm, P.J. Mendes Cerveira, H. Schuh, and P. Tregoning. The impact of mapping functions for the neutral atmosphere based on numerical weather models in GPS data analysis. In P. Tregoning and C. Rizos, editors, Dynamic Planet, volume 130 of IAG Symposia Series, pages 837–843. Springer-Verlag, 2007. doi:10.1007/978-3-540-49350-1_118.
J. Böhm, A. Niell, P. Tregoning, and H. Schuh. Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys. Res. Lett., 33:L07304, 2006a. doi: 10.1029/2005GL025546.
J. Böhm, D. Salstein, M. Alizadeh, and D. D. Wijaya. Geodetic and atmospheric background. In Atmospheric effects in space geodesy. Springer-Verlag, Berlin, Germany, 2013. this book.
J. Böhm and H. Schuh. Vienna mapping functions. In Proc. 16th Working Meeting on European VLBI for Geodesy and Astrometry, page 131 143, Leipzig, Germany, 2003. Verlag des Bundesamtes für Kartographie und Geodäsie.
J. Böhm and H. Schuh. Vienna mapping functions in VLBI analyses. Geophys. Res. Lett., 31:L01603, 2004. doi: 10.1029/2003GL018984.
J. Böhm and H. Schuh. Tropospheric gradients from the ECMWF in VLBI analysis. J. Geodesy, 81(6–8):409–421, 2007. doi: 10.1007/s00190-006-0126-9.
J. Böhm, B. Werl, and H. Schuh. Troposphere mapping functions for GPS and very long baseline interferometry from european centre for medium-range weather forecasts operational analysis data. J. Geophys. Res., 111:B02406, 2006b. doi:10.1029/2005JB003629.
M. Born and E. Wolf. Principles of optics. Cambridge Univ. Press, New York, 7\(^{{\rm th}}\) edition, 1999.
A. V. Bosisio and C. Mallet. Infuence of cloud temperature on brightness temperature and consequences for water retrieval. Radio Sci., 33(4):929–939, 1998. doi: 10.1029/98RS00949.
G. Boudouris. On the index of refraction of air, the absorption and dispersion of centimeter waves in gases. J. Res. Natl. Bur. Stand., 67D:631–684, 1963.
K. G. Budden. The propagation of radio waves. Cambridge University Press, New York, 1 edition, 1985.
V. Cerveny. Seismic ray theory. Cambridge University Press, New York, 2005.
V. Cerveny, L. Klimes, and I. Psencik. Complete seismic-ray tracing in three-dimensional structures. In D. J. Doornbos, editor, Seismological algorithms, page 89–168. Academic Press, New York, 1988.
C. Champollion, F. Mason, M.-N. Bouin, A. Walpersdorf, E. Doerflinger, O. Bock, and J. van Baelen. GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment. Atmospheric Research, 74:253–274, 2005. doi: 10.1016/j.atmosres.2004.04.003.
C.C. Chao. The troposphere calibration model for mariner mars 1971. Technical Report 32–1587, NASA JPL, Pasadena, CA, 1974.
G. Chen and T. A. Herring. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res., 102(B9):20489–20502, 1997. doi: 10.1029/97JB01739.
P. E. Ciddor. Refractive index of air: new equations for the visible and near infrared. Appl. Opt., 35(9):1566–1573, 1996. doi: 10.1364/AO.35.001566.
P. E. Ciddor and R. J. Hill. The refractive index of air \(2\). Group index. Appl. Opt., 38:1663–1667, 1999. doi: 10.1364/AO.38.001663.
G. d’Auria, F. S. Marzano, and U. Merlo. Model for estimating the refractive-index stucture constant in clear-air intermittent turbulence. Applied Optics, 32:2674–2680, 1993. doi:10.1364/AO.32.002674.
J. L. Davis, G. Elgered, A. E. Niell, and C. E. Kuehn. Ground-based measurement of gradients in the “wet” radio refractivity of air. Radio Sci., 28(6):1003–1018, 1993. doi: 10.1029/93RS01917.
J. L. Davis, T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 20(6):1593–1607, 1985. doi: 10.1029/RS020i006p01593.
J.L. Davis. Atmospheric propagation effects on radio interferometry. Technical Report AFGL-TR-86-0243, Scientific Report No. 1, Air Force Geophysics Laboratory, 1986.
P. Debye. Polar Molecules. Dover, New York, 1929.
B. Edlén. The refractive index of air. Metrologia, 2(2):71–80, 1966. doi: 10.1088/0026-1394/2/2/002.
G. Elgered. Tropospheric radio-path delay from ground based microwave radiometry. In M. Janssen, editor, Atmospheric Remote Sensing by Microwave Radiometry, chapter 5. Wiley & Sons, Inc., N.Y., 1993.
G. Elgered, J. L. Davis, T. A. Herring, and I. I. Shapiro. Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay. J. Geophys. Res., 95(B4):6541–6555, 1991. doi:10.1029/90JB00834.
G. Elgered, H.-P. Plag, H. van der Marel, S. Barlag, and J. Nash, editors. Exploitation of ground-based GPS for operational numerical weather prediction and climate applications. COST action 716: Final Report. European Union, Brussels, Belgium, 2005.
T. R. Emardson and H. J. P. Derks. On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere. Meteorol. Appl., 7(1):61–68, 2000. doi: 10.1017/S1350482700001377.
T. R. Emardson, G. Elgered, and J. M. Johansson. External atmospheric corrections in geodetic very-long-baseline interferometry. J. Geodesy, 73:375–383, 1999. doi: 10.1007/s001900050256.
L. Essen and K. D. Froome. The refractive indices and dielectric constants of air and its principal constituents at 24,000 Mc/s. Proc. Phys Soc. B, 64(10):862–875, 1951. doi: 10.1088/0370-1301/64/10/303.
A. Flores, G. Ruffini, and A. Rius. 4D tropospheric tomography using GPS slant delays. Ann. Geophysicae, pages 223–234, 2000. doi: 10.1007/s00585-000-0223-7.
U. Fölsche. Tropospheric water vapor imaging by combination of spaceborne and ground-based GNSS sounding data. PhD thesis, Univ. Graz, Graz, Austria, 1999.
P. J. Fowler. Finite-difference solutions of the 3d eikonal equation in spherical coordinates. In Proc. 64th SEG meeting, pages 1394–1397, Los Angeles, USA, 1994.
C. S. Gardner. Effects of horizontal refractivity gradients on the accuracy of laser ranging to satellites. Radio Sci., 11(12):1037–1044, 1976. doi: 10.1029/RS011i012p01037.
P. Gegout, R. Biancale, and L. Soudarin. Adaptive mapping functions to the azimuthal anisotropy of the neutral-atmosphere. J. Geodesy, 85(10):661–677, 2011. doi: 10.1007/s00190-011-0474-y.
L. Gradinarsky and P. Jarlemark. Ground-based GPS tomography of water vapor: Analysis of simulated and real data. J. Meteorol. Soc. Japan, 82:551–560, 2004. doi: 10.2151/jmsj.2004.551.
L. P. Gradinarsky, J. M. Johansson, H. R. Bouma, H.-G. Scherneck, and G. Elgered. Climate monitoring using GPS. Physics and Chemistry of the Earth, 27:335–340, 2002. doi: 10.1016/S1474-7065(02)00009-8.
B. A. Greene and T. A. Herring. Multiple wavelength laser ranging. In The 6th International Workshop on Laser Ranging Instrumentation, 1986.
S. I. Gutman and S. G. Benjamin. The role of ground-based GPS meteorological observations in numerical weather prediction. GPS Solutions, 4(4):16–24, 2001. doi: 10.1007/PL00012860.
R. Heinkelmann, J. Böhm, H. Schuh, S. Bolotin, G. Engelhardt, D. S. MacMillan, M. Negusini, E. Skurikhina, V. Tesmer, and O. Titov. Combination of long time-series of troposphere zenith delays observed by VLBI. J. Geodesy, 81(6–8):483–501, 2007. doi:10.1007/s00190-007-0147-z.
T. A. Herring. Modeling atmospheric delays in the analysis of space geodetic data. In J.C. De Munk and T. A. Spoelstra, editors, Symposium on Refraction of Transatmospheric Signals in Geodesy, pages 157–164. Netherlands Geod. Comm., Delft, 1992.
T. A. Herring, J. L. Davis, and I. I. Shapiro. Geodesy by radio interferometry: The application of Kalman filtering to the analysis of Very Long Baseline Interferometry data. J. Geophys. Res., 95(B8):12,561–12,581, 1990. 90JB00683.
R. J. Hill, R. S. Lawrence, and J. T. Priestley. Theoretical and calculational aspects of the radio refractive index of water vapor. Radio Sci., 17(5):1251–1257, 1982. doi: 10.1029/RS017i005p01251.
T. Hobiger, R. Ichikawa, Y. Koyama, and T. Kondo. Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models. J. Geophys. Res., 113:D20302, 2008. doi: 10.1029/2008JD010503.
H.S. Hopfield. Two-quartic tropospheric refractivity profile for correcting satellite data. J. Geophys. Res., 74:4487–4499, 1969. doi: 10.1029/JC074i018p04487.
C. G. Hulley. Improved Refraction Corrections for Satellite Laser Ranging (SLR) by Ray Tracing through Meteorological Data. PhD thesis, University of Maryland, 2007.
G. C. Hulley and E. C. Pavlis. A ray-tracing technique for improving Satellite Laser Ranging atmospheric delay corrections, including the effects of horizontal refractivity gradients. J. Geophys. Res., 112(B06417):1–19, 2007. doi: 10.1029/2006JB004834.
I. Ifadis. The atmospheric delay of radio waves: Modeling the elevation dependence on a global scale. Technical Report 38L, School Electrical Computer Engineering, Chalmers University of Technology, Göteborg, Sweden, 1986. ISBN:99-0605353-4.
K. Iizuka. Engineering optics, volume 35 of Springer Series in Optical Sciences. Springer-Verlag, New York, 3rd edition, 2008.
A. Ishimaru. Wave Propagation and Scattering in Random Media. Academic Press, New York, 1978.
J. D. Jackson. Classical electrodynamics. Wiley & Sons, Inc., N.Y., 3rd edition, 1998.
P. O. J. Jarlemark. Analysis of temporal and spatial variations in atmospheric water vapor using microwave radiometry. PhD Thesis, Tech. Rep. 308, School Electrical Computer Engineering, Chalmers Univ. Tech., 1997. Göteborg, Sweden.
H. Jeske. Meteorological optics and radiometeorology. In Landolt-Börnstein, editor, Numerical data and functional relationships in science and technology, volume 4b of Group V. Springer, 1988.
S. Jin, J.-U. Park, J.-H. Cho, and P.-H. Park. Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications. J. Geophys. Res., 112:D09110, 2007. doi: 10.1029/2006JD007772.
A. Karabatić, R. Weber, and T. Haiden. Near real-time estimation of tropospheric water vapour content from ground based GNSS data and its potential contribution to weather now-casting in Austria. Adv. Space Res., 47(10):1691–1703, 2011. doi: 10.1016/j.asr.2010.10.028.
A. N. Kolmogorov. Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32(1):16–18, 1941a. English translation in: Proc R. Soc. Lond. A, 434:15–17.
A. N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30(4):299–303, 1941b. English translation in: Proc R. Soc. Lond. A, 434:9–13.
J. Kouba. Implementation and testing of the gridded vienna mapping function 1 (VMF1). J. Geodesy, 82(4–5):193–205, 2008. doi: 10.1007/s00190-007-0170-0.
C. E. Kuehn, W. E. Himwich, T. A. Clark, and C. Ma. An evaluation of water vapor radiometer data for calibration of the wet path delay in very long baseline interferometry experiments. Radio Sci., 26(6):1381–1391, 1991. doi: 10.1029/91RS02020.
R.F. Leandro, M.C. Santos, and R.B. Langley. UNB neutral atmosphere models: Development and performance. In National Technical Meeting of The Institute of Navigation, Monterey, California, 18–20 January 2006, pages 564–573, 2006.
H. J. Liebe. An updated model for millimeter wave propagation in moist air. Radio Sci., 20(5): 1069–1089, 1985. doi:10.1029/RS020i005p0106.
H. J. Liebe. MPMan atmospheric millimeter-wave propagation model. Int. J. Infrared Millimeter Waves, 10(6): 631–650, 1989. doi: 10.1007/BF01009565.
H. J. Liebe, G. A. Hufford, and M. G. Cotton. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. In Proc. AGARD 52d Specialists Meeting of the Electromagnetic Wave Propagation Panel, pages 3.1–3.10, Palam de Mallorca, Spain, 1993. AGARD.
D. S. MacMillan. Atmospheric gradients from very long baseline interferometry observations. Geophys. Res. Lett., 22(9):1041–1044, 1995. doi: 10.1029/95GL00887.
D. S. MacMillan and C. Ma. Evaluation of very long baseline interferometry atmospheric modeling improvements. J. Geophys. Res., 99(B1):637–651, 1994. doi: 10.1029/93JB02162.
D. S. MacMillan and C. Ma. Atmospheric gradients and the VLBI terrestrial and celestial reference frames. Geophys. Res. Lett., 24(4):453–456, 1997. doi:10.1029/97GL00143.
J.W. Marini. Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Science, 7(2):223–231, 1972. doi: 10.1029/RS007i002p00223.
J.W. Marini and C.W. Murray. Correction of laser range tracking data for atmospheric refraction at elevation angles above 10 degrees. Technical Report X-591-73-351, NASA, 1973.
V. B. Mendes. Modeling of the neutral-atmosphere propagation delay in radiometric space techniques. PhD dissertation, Department of Geodesy and Geomatics Engineering Tech. Report No. 199, University of New Brunswick, Fredericton, New Brunswick, Canada, 1999. General definitions of IWV, relative humidity etc.
V. B. Mendes and R. Langley. Tropospheric zenith delay prediction accuracy for airborne GPS high-precision positioning. In Proc. of ION GPS-98, pages 337–347, Nashville, TN, USA, 1998.
V. B. Mendes and E. C. Pavlis. High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett., 31, 2004. doi: 10.1029/2004GL020308.L14602.
V. B. Mendes, G. Prates, E. C. Pavlis, D. E. Pavlis, and R. B. Langley. Improved mapping functions for atmospheric refraction correction in SLR. Geophys. Res. Lett., 29(10):10.1029-10.1032, 2002. doi:10.1029/2001GL014394.
V. Nafisi, M. Madzak, J. Böhm, A. A. Ardalan, and H. Schuh. Ray-traced tropospheric delays in VLBI analysis. Radio Sci., 47:RS2020, 2012a. doi: 10.1029/2011RS004918.
V. Nafisi, L. Urquhart, M. C. Santos, F. G. Nievinski, J. Böhm, D. D. Wijaya, H. Schuh, A. A. Ardalan, T. Hobiger, R. Ichikawa, F. Zus, J. Wickert, and P. Gegout. Comparison of ray-tracing packages for troposphere delays. IEEE Trans. Geosci. Remote Sensing, 50(2):469–481, 2012b. doi:10.1109/TGRS.2011.2160952.
A. Niell. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res., 101(B2):3227–3246, 1996. doi: 10.1029/95JB03048.
A. E. Niell. Improved atmospheric mapping functions for VLBI and GPS. Earth Planets Space, 52:699–702, 2000.
A. E. Niell. Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys. Chem. Earth (A), 26:475–480, 2001. doi: 10.1016/S1464-1895(01)00087-4.
A. E. Niell, A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Upham. Comparison of measurements of atmospheric wet delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI. J. Atmos. Oceanic Technol., 18(6):830–850, 2001. doi:10.1175/1520-0426(2001)018<0830:COMOAW>2.0.CO;2.
A. E. Niell. Interaction of atmosphere modeling and vlbi analysis strategy. In D. Behrend and K. Baver, editors, International VLBI Service for Geodesy and Astrometry 2006 General Meeting Proceedings, number NASA/CP-2006-214140, 2006.
F. G. Nievinski. Ray-tracing options to mitigate the neutral atmosphere delay in GPS. Master’s thesis, University of New Brunswick, Department of Geodesy and Geomatics Engineering, 2009. URL http://hdl.handle.net/1882/1050 Technical Report No. 262.
T. Nilsson. Improving GNSS tropospheric tomography by better knowledge of atmospheric turbulence. In Proc. 1:st Colloquium Scientific and Fundamental Aspects of the Galileo Programme, Toulouse, France, 2007. European Space Agency.
T. Nilsson and G. Elgered. Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data. J. Geophys. Res., 113:D19101, 2008. doi: 10.1029/2008JD010110.
T. Nilsson and L. Gradinarsky. Water vapor tomography using GPS phase observations: Simulaton results. IEEE Trans. Geosci. Remote Sensing, 44(10):2927–2941, 2006. doi:10.1109/TGRS.2006.877755.
T. Nilsson, L. Gradinarsky, and G. Elgered. Correlations between slant wet delays measured by microwave radiometry. IEEE Trans. Geosci. Remote Sensing, 43(5):1028–1035, 2005. doi:10.1109/TGRS.2004.840659.
T. Nilsson, L. Gradinarsky, and G. Elgered. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment. Tellus A, 59:574–682, 2007. doi: 10.1111/j.1600-0870.2007.00247.x.
T. Nilsson and R. Haas. Impact of atmospheric turbulence on geodetic very long baseline interferometry. J. Geophys. Res., 115:B03407, 2010. doi: 10.1029/2009JB006579.
T. Ning and G. Elgered. Trends in the atmospheric water vapor content from ground-based GPS: The impact of the elevation cutoff angle. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5:744–751, 2012. doi: 10.1109/JSTARS.2012.2191392.
A. Nothnagel, J. Cho, A. Roy, and R. Haas. WVR calibration applied to European VLBI observing sessions. In P. Tregoning and C. Rizos, editors, Dynamic Planet, volume 130 of IAG Symposia, pages 152–157. Springer, Berlin, Germany, 2007. doi:10.1007/978-3-540-49350-1_24
J. C. Owens. Optical refractive index of air: Dependence on pressure, temperature and composition. Appl. Opt., 6(1):51–59, 1967. doi: 10.1364/AO.6.000051.
T. K. Pany. Development and application of tropospheric GPS slant delay models based on numerical weather prediction models and turbulence theory. PhD thesis, Institute of Engineering Geodesy and Measurements Systems, Graz University of Technology, 2002.
D. Perler, A. Geiger, and F. Hurter. 4D GPS water vapor tomography: new parameterized approaches. J. Geodesy, 85(8):539–550, 2011. doi: 10.1007/s00190-011-0454-2.
P. Poli, P. Moll, F. Rabier, G. Desroziers, B. Chapnik, L. Berre, S. B. Healy, E. Andersson, and F.-Z. El Guelai. Forecast impact studies of zenith total delay data from European near real-time GPS stations in météo france 4DVAR. J. Geophys. Res., 112:D06114, 2007. doi:10.1029/2006JD007430.
M. T. Prilepin. Light modulating method for determining average index of refraction of air along a line. Tr. Tsentr. Nauchno-Issled. Inst. Geod. Aero. Kartog., 114:127, 1957.
L. F. Richardson. The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. Lond. A, 97(686):354–373, 1920.
P. W. Rosenkranz. Water vapor microwave continuum absorption: a comparison of measurements and models. Radio Sci., 33(4):919–928, 1998. doi: 10.1029/98RS01182.
M. Rothacher, T.A. Springer, S. Schaer, and G. Beutler. Processing strategies for regional GPS networks. In F.K. Brunner, editor, Advances in Positioning and Reference Frames, volume 118 of IAG Symposia Series, pages 93–100. Springer-Verlag, 1998.
J. M. Rüeger. Refractive index formulae for radio waves. In Proc. XXII FIG International Congress, Washington DC, USA, 2002a. FIG. URL http://www.fig.net/pub/fig_2002/procmain.htm.
J. M. Rüeger. Refractive indices of light, infrared and radio waves in the atmosphere. Technical report, UNISURV S-68, School of Surveying and Spatial Information Systems, The University of New South Wales, Australia, 2002b.
J. Saastamoinen. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In S. W. Henriksen et al., editors, The Use of Artificial Satellites for Geodesy, volume 15, pages 247–251, AGU, Washington, D.C., 1972b.
J. Saastamoinen. Introduction to practical computation of astronomical refraction. Bull. Géod., 106:383–397, 1972a. doi: 10.1007/BF02522047.
T. M. Scheve and C. T. Swift. Profiling atmospheric water vapor with a K-band spectral radiometer. IEEE Trans. Geosci. Remote Sensing, 37(3):1719–1729, 1999. doi:10.1109/36.763294.
W. A. Schneider, Jr. Robust, efficient upwind finite-difference traveltime calculations in 3d. In Proc. 63rd SEG meeting, pages 1036–1039, Washington, DC, USA, 1993.
S. D. Schubert, J. Pjaendtner, and R. Rood. An assimilated data set for earth science applications. Bull. American. Meteo. Soc., 74:2331–2342, 1993. doi: 10.1175/1520-0477(1993)074<2331:AADFES>2.0.CO;2.
K. Snajdrova, J. Böhm, P. Willis, R. Haas, and H. Schuh. Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J. Geodesy, 79(10–11):613–623, 2006. doi: 10.1007/s00190-005-0010-z.
F. S. Solheim, J. Vivekanandan, R. H. Ware, and C. Rocken. Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates. J. Geophys. Res., 104(D8):9663–9670, 1999. doi: 10.1029/1999JD900095.
P. Steigenberger, J. Böhm, and V. Tesmer. Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J. Geodesy, 83:943–951, 2009. doi:10.1007/s00190-009-0311-8.
P. Steigenberger, V. Tesmer, M. Krügel, D. Thaller, R. Schmid, S. Vey, and M. Rothacher. Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients. J. Geodesy, 81(6–8):503–514, 2007. doi:10.1007/s00190-006-0124-y.
V. I. Tatarskii. The Effects of the Turbulent Atmosphere on Wave Propagation. Israel Program for Scientific Translations, Jerusalem, 1971.
G. I. Taylor. The spectrum of turbulence. Proc. Roy. Soc. Lond. A, 164(919):476–490, 1938. URL http://www.jstor.org/stable/97077.
K. Teke, J. Böhm, T. Nilsson, H. Schuh, P. Steigenberger, R. Dach, R. Heinkelmann, P. Willis, R. Haas, S. Garcia-Espada, T. Hobiger, R. Ichikawa, and S. Shimizu. Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J. Geodesy, 85(7):395–413, 2011. doi:10.1007/s00190-010-0434-y.
V. Tesmer, J. Böhm, R. Heinkelmann, and H. Schuh. Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J. Geodesy, 81(6–8): 409–421, 2007. doi:10.1007/s00190-006-0126-9.
G. D. Thayer. A rapid and accurate ray tracing algorithm for a horizontally stratified atmosphere. Radio Sci., 1(2):249–252, 1967.
G. D. Thayer. An improved equation for the radio refractive index of air. Radio Sci., 9(10):803–807, 1974. doi: 10.1029/RS009i010p00803.
R. N. Thessin. Atmospheric signal delay affecting GPS measurements made by space vehicles during launch, orbit and reentry. Master’s thesis, Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, Cambridge, Mass., 2005. URL http://hdl.handle.net/1721.1/33211.
D. M. Tralli and S. M. Lichten. Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. Bull. Geod., 64:127–159, 1990. doi: 10.1007/BF02520642.
P. Tregoning and T.A. Herring. Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys. Res. Lett., 33(L23303), 2006. doi:10.1029/2006GL027706.
K. E. Trenberth, A. Dai, R.M. Rasmussen, and D.B. Parsons. The changing character of precipitation. Bull. Amer. Meteor. Soc., 84(9):12051217, 2003. doi:10.1175/BAMS-84-9-1205.
R. N. Treuhaft and G. E. Lanyi. The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci., 22(2):251–265, 1987. doi: 10.1029/RS022i002p00251.
M. Troller, A. Geiger, E. Brockmann, J.-M. Bettems, B. Bürki, and H.-G. Kahle. Tomographic determination of the spatial distribution of water vapor using GPS observations. Adv. Space Res., 37(12):2211–2217, 2006. doi: 10.1016/j.asr.2005.07.002.
H. Vedel. Targeting optimal use of GPS humidity measurements in meteorology: Final report of the TOUGH project, 2006. URL http://web.dmi.dk/pub/tough/.
H. Vedel and X.-Y. Huang. Impact of ground based GPS data on numerical weather prediction. J. Met. Soc. Japan, 82(1B):459–472, 2004. doi:10.2151/jmsj.2004.459.
J. Wang, L. Zhang, and A. Dai. Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J. Geophys. Res., 110(D21101), 2005. doi:10.1029/2005JD006215.
R. Ware, C. Rocken, F. Solheim, T. van Hove, C. Alber, and J. Johnson. Pointed water vapor radiometer corrections for accurate global positioning system surveying. Geophys. Res. Lett., 20(23): 2635–2638, 1993. doi: 10.1029/93GL02936.
E. R. Westwater, M. J. Falls, and I. A. Popa-Fotin. Ground-based microwave radiometric observations of precipitable water vapor: A comparison with ground truth from two radiosonde observing systems. J. Atmos. Oceanic Technol., 6(4):724–730, 1989. doi:10.1175/1520-0426(1989)006.
A. D. Wheelon. Electromagnetic scintillation: Geometrical optics. Cambridge University Press, 2001.
D. D. Wijaya. Atmospheric correction formulae for space geodetic techniques. PhD thesis, Graz University of Technology, Institute of Engineering Geodesy and Measurements Systems, Graz, Austria, 2010.
D. D. Wijaya, J. Böhm, M. Karbon, and H. Schuh. Atmospheric pressure loading. In Atmospheric Effects in Space Geodesy. Springer-Verlag, 2013. this book.
D.D. Wijaya and F.K. Brunner. Atmospheric range correction for two-frequency SLR measurements. J. Geodesy, 85(9):623–635, 2011. doi: 10.1007/s00190-011-0469-8.
S.-C. Wu. Optimum frequencies of a passive microwave radiometer for tropospheric path-length correction. IEEE Trans. Antennas Propagat., 27:233–239, 1979. doi:10.1109/TAP.1979.1142066.
Acknowledgments
First of all we would like to thank the reviewer, Gunnar Elgered, for providing very valuable suggestions to improve the quality of this part of the book. We are grateful for the financial support from the German Science Foundation (DFG, SCHU 1103/3-2), and from the Austrian Science Fund (FWF, P20902-N10).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Nilsson, T., Böhm, J., Wijaya, D.D., Tresch, A., Nafisi, V., Schuh, H. (2013). Path Delays in the Neutral Atmosphere. In: Böhm, J., Schuh, H. (eds) Atmospheric Effects in Space Geodesy. Springer Atmospheric Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36932-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-36932-2_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36931-5
Online ISBN: 978-3-642-36932-2
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)