Skip to main content

Ionospheric Effects on Microwave Signals

  • Chapter
  • First Online:
Atmospheric Effects in Space Geodesy

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

The ionosphere is a dispersive medium for space geodetic techniques operating in the microwave band. Thus, signals traveling through this medium are—to the first approximation—affected proportionally to the inverse of the square of their frequencies. This effect, on the other hand, can reveal information about the parameters of the ionosphere in terms of Total Electron Content (TEC) of the electron density. This part of the book provides an overview of ionospheric effects on microwave signals. First, the group and phase velocities are defined along with the refractive index in the ionosphere and the ionospheric delay. Then, we focus mainly on the mitigation and elimination of ionospheric delays in the analysis of space geodetic observations, specifically for Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI) observations. In particular, we summarize existing models as well as strategies based on observations at two or more frequencies to eliminate first and higher order delays. Finally, we review various space geodetic techniques (including satellite altimetry and radio occultation data) for estimating values and maps of TEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • M.M. Alizadeh, H. Schuh, S. Todorova, and M. Schmidt. Global ionosphere maps of VTEC from gnss, satellite altimetry, and Formosat-3/COSMIC data. J. Geod., 85 (12): 975–987, December 2011.

    Google Scholar 

  • AVISO. The French active archive data center for multi-satellite altimeter missions, 2007. http://www.aviso.oceanobs.com.

  • S. Bassiri and G.A. Hajj. Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manucsripta Geodaetica, 18: 280–289, 1993.

    Google Scholar 

  • M. Bauer. Vermessung und Ortung mit Satelliten - GPS und andere satellitengestützte Navigationssysteme. Wichmann, Karlsruhe, 5th Edition, 2003.

    Google Scholar 

  • D. Bilitza, L.A. McKinnell, B. Reinisch, and T. Fuller-Rowell. The International Reference Ionosphere today and in the future. J. Geod., 85: 909–920, December 2011.

    Google Scholar 

  • D. Bilitza and B.W. Reinisch. International Reference Ionosphere 2007: Improvements and new parameters. Adv. Space Res., 42: 599–609, 2007.

    Google Scholar 

  • J. Böhm, D. Salstein, M. Alizadeh, and D. D. Wijaya. Geodetic and atmospheric background. In J. Böhm and H. Schuh, editors, Atmospheric Effects in Space Geodesy. Springer-Verlag, 2013.

    Google Scholar 

  • M. Born and E. Wolf. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Macmillan, New York, 2nd Edition, 1964.

    Google Scholar 

  • C. Brunini, A. Meza, and W. Bosch. Temporal and spatial variability of the bias between TOPEX- and GPS-derived total electron content. J. Geod., 79 (4–5):175–188, 2005.

    Google Scholar 

  • F.K. Brunner and M. Gu. An improved model for the dual frequency ionospheric correction of GPS observations. Manuscripta geodaetica, 16(3):205–214, 1991.

    Google Scholar 

  • K.G. Budden. The propagation of radio waves. Cambridge Univ. Press, 1985.

    Google Scholar 

  • CDDIS. CDDIS ftp site. Website, 2011. ftp://cddis.gsfc.nasa.gov/.

  • CDDIS-IONEX. IONEX ftp site. Website, 2011. ftp://cddis.gsfc.nasa.gov/pub/gps/products/ionex.

  • D.B. Chelton, J.C. Ries, B.J. Haines, L.L. Fu, and P. Callahan. Satellite altimetry and Earth sciences: A handbook of techniques and applications. Academic Press, London, 2001.

    Google Scholar 

  • CNES. Jason-2 altimetry mission for ocean observation, 2011. http://smsc.cnes.fr/JASON2/index.htm.

  • COSMIC. Cosmic program offical. Website, 2011. http://www.cosmic.ucar.edu/about.html.

  • R. Dach, U. Hugentobler, P. Fridez, and M. Meindl. Bernese GPS Software, Version 5.0. Astronomical Institute, University of Bern, 2007.

    Google Scholar 

  • D. Dettmering, R. Heinkelmann, M. Schmidt. Systematic differences between VTEC obtained by different space-geodetic techniques during CONT08. J. Geod., 85:443–451, 2011a.

    Google Scholar 

  • D. Dettmering, M. Schmidt, R. Heinkelmann, and M. Seitz. Combination of different space-geodetic observations for regional ionosphere modeling. J. Geod., 85: 989–998, 2011b.

    Google Scholar 

  • G. Di Giovanni and S.M. Radicella. An analytical model of the electron density profile in the ionosphere. Adv. Space Res., 10 (11): 27–30, 1990.

    Google Scholar 

  • J.P. Dumont, V. Rosmorduc, N. Picot, S. Desai, H. Bonekamp, J. Figa, J. Lillibridge, and R. Scharroo. OSTM/Jason-2 Products Handbook. CNES and EUMETSAT and JPL and NOAA/NESDIS, 4th Edition, August 2009.

    Google Scholar 

  • J. Feltens, M. Angling, N. Jackson-Booth, N. Jakowski, M. Hoque, C. Mayer, M. Hernández-Pajares, A. García-Rigo, R. Orús-Perez, A. Aragón-Angel, and M.J. Zornoza. GNSS contribution to next generation global ionospheric monitoring. Technical report, ESA/ESOC Final Report, January 2010.

    Google Scholar 

  • R. Fleury, F. Foucher, and P. Lassudrie-Duchesne. Global TEC measurements capabilities of the DORIS system. Adv. Space Res., 11 (10): 1051–1054, 1991.

    Google Scholar 

  • M. Fritsche, R. Dietrich, C. Knöfel, A. Rülke, and S. Vey. Impact of higher-order ionospheric terms on GPS estimates. Geophys. Res. Lett., 32, L23311, 2005

    Google Scholar 

  • L.L. Fu, E.J. Christensen, C.A. Yamarone, M. Lefebvre, Y. Ménard, M. Dorrer, and P. Escudier. Topex/Poseidon mission overview. J. Geophys. Res., 99 (C12):24369–24382, 1994.

    Google Scholar 

  • M. Garcia-Fernandez, M. Hernández-Pajares, J.M. Juan, and J. Sanz. Performance of the improved Abel transform to estimate electron density profiles from GPS occultation data. GPS Solut, 9: 105–110, 2005.

    Google Scholar 

  • G. K. Hartmann and R. Leitinger. Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 MHz. Bull. Géod., 58: 109–399, 1984.

    Google Scholar 

  • M. Hawarey, T. Hobiger, and H. Schuh. Effects of the 2nd order ionospheric terms on VLBI measurements. Geophys. Res. Lett., 32, L11304, 2005.

    Google Scholar 

  • M. Hernández-Pajares. IGS Ionosphere WG Status Report: Performance of IGS Ionosphere TEC map. Technical report, IGS Workshop, Bern, Switzerland, 2004.

    Google Scholar 

  • M. Hernández-Pajares, J.M. Juan, and J. Sanz. Improving the Abel inversion by adding ground GPS data to LEO radio occultation in ionospheric sounding. Geophys. Res. Lett., 27 (16): 2473–2476, 2000.

    Google Scholar 

  • M. Hernández-Pajares, J.M. Juan, J. Sanz, and D. Bilitza. Combining GPS measurements and IRI model values for space weather specification. Adv. Space. Res., 29 (6): 949–958, 2002.

    Google Scholar 

  • T. Hobiger. VLBI as tool to probe the ionosphere. PhD thesis, Inst. of Geodesy and Geophysics, Vienna Univ. of Technology, Austria, 2005.

    Google Scholar 

  • T. Hobiger, T. Kondo, H. Schuh. Very long baseline interferometry as a tool to probe the ionosphere. Radio Science, 41 (1): RS1006, 2006.

    Google Scholar 

  • B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. GPS Theory and Practice. Springer, Wien New York, 2nd Edition, 1993.

    Google Scholar 

  • ILRS. Jason2 satellite information. Website, 2011. http://ilrs.gsfc.nasa.gov/satellite_missions/list_of_satellites/jas2_general.html.

  • D.A. Imel. Evaluation of the TOPEX/POSEIDON dual-frequency ionosphere correction. J. Geophys. Res., 99 (12): 24895–24906, 1994.

    Google Scholar 

  • ITU. ITU-R Recommendation, 2007. http://www.itu.int/ITU-R.

  • ITU. Radiocommunication sector. Website, 2011. http://www.itu.int/oth/R0A04000018/en.

  • N. Jakowski, R. Leitinger, and M. Angling. Radio occultation techniques for probing the ionosphere. Annals of Geophysics, Supplement to Vol. 47: 1049–1066, 2004.

    Google Scholar 

  • N. Jakowski, A. Wehrenpfennig, S. Heise, C. Reigber, and H. Lühr. Status of ionospheric radio occultation CHAMP data analysis and validation of higher level data products. In 1st CHAMP Science Meeting, Potsdam - Germany, 22–25 January 2002a.

    Google Scholar 

  • N. Jakowski, A. Wehrenpfennig, S. Heise, CH. Reigber, H. Lühr, L. Grunwaldt, and T. Meehan. GPS radio occultation measurements of the ionosphere from CHAMP early results. Geophys. Res. Lett., 29 (10), 2002b.

    Google Scholar 

  • JPL. JPL - NASA, Gaim introduction. Website, 2011. http://iono.jpl.nasa.gov/gaim/intro.html.

  • J. Klobuchar. Design and characteristics of the GPS ionospheric time-delay algorithm for single-frequency users. In PLANS’86 - Position Location and Navigation Symposium, pages 280–286, Las Vegas, Nevada, 4–7 November 1986.

    Google Scholar 

  • J. A. Klobuchar. Ionospheric effects on GPS, in Global Positioning System: Theory and Application, Volume I. American Institute of Aeronautics and Astronautics, Washington DC., 1996.

    Google Scholar 

  • A. Krankowski, M. Hernandez-Pajares, J. Feltens, A. Komjathy, S. Schaer, A. Garcia-Rigo, and P. Wielgosz. Present and future of IGS ionospheric products. Technical report, IGS Workshop, Newcastle, England, 2010.

    Google Scholar 

  • L.K. Lilov. On stabilization of steady-state motions of mechanical systems with respect to a part of the variables. Journal of Applied Mathematics and Mechanics, 36(6):922–930, 1972.

    Google Scholar 

  • M. Materassi. Ionospheric Tomography, 3d and 4d imaging and data assimilation. In invited paper, Matera, Italy, 13–15 October 2003. Atmospheric Remote Sensing using Satellite Navigation Systems Special Symposium of the URSI Joint Working Group FG, ASI Centro di Geodesia Spaziale ’Giuseppe Colombo’.

    Google Scholar 

  • C.N. Mitchell and P.S. Cannon. Multi-instrumental data analysis system (MIDAS) imaging of the ionosphere. Technical report, University of Bath, United States Air Force European Office of Aerospace Research and Development, February 2002.

    Google Scholar 

  • C.N. Mitchell and P.S.J. Spencer. A three dimensional time-dependent algorithm for ionospheric imaging using GPS. Annal. Geophysics, 46 (4): 687–696, 2003.

    Google Scholar 

  • M. Mosert de Gonzalez and S.M. Radicella. On a characteristic point at the base of the F2 layer in the ionosphere. Adv. Space Res., 10 (11):17–25, 1990.

    Google Scholar 

  • B. Nava. A near real-time model-assisted ionosphere electron density retrieval method. Radio Science, 41(6), 2006.

    Google Scholar 

  • B. Nava, P Coïsson, and S.M. Radicella. A new version of the Nequick ionosphere electron density model. J. Atmos. Solar-Terr. Phys., 70: 1856–1862, 2008.

    Google Scholar 

  • T. Nilsson, J. Böhm, D. D. Wijaya, A. Tresch, V. Nafisi, and H. Schuh. Path delays in the neutral atmosphere. In J. Böhm and H. Schuh, editors, Atmospheric effects in space geodesy. Springer-Verlag, 2013. this book.

    Google Scholar 

  • U.S. Naval Research Laboratory Press Release NRL. Updated version of GAIM model goes operational. Website, 2008. http://www.nrl.navy.mil/pao/pressRelease.php?Y=2008&R=30-08r.

  • R. Orús, M. Hernández-Pajares, J.M. Juan, J. Sanz, and M. García-Fernández. Performance of different TEC models to provide GPS ionospheric corrections. J. Atmos. Solar-Terr. Phys., 64 (18): 2055–2062, 2002.

    Google Scholar 

  • G. Petit and B. Luzum, editors. IERS Conventions 2010. Technical Report 36, 2010.

    Google Scholar 

  • S.M. Radicella. The Nequick model genesis, uses and evolution. Annals of Geophysics, 52 (3/4): 417–422, 2009.

    Google Scholar 

  • S.M. Radicella and R. Leitinger. The evolution of the DGR approach to model electron density profiles. Adv. Space Res., 27 (1): 35–40, 2001.

    Google Scholar 

  • S.M. Radicella and B. Nava. Nequick model: Origin and evolution. In Antennas Propagation and EM Theory (ISAPE), pages 422–425. IEE Xplore, November - December 2010.

    Google Scholar 

  • J.R. Ray and B.E. Corey. Current precision of VLBI multi-band delay observables. In Proceedings AGU Chapman Conference on Geodetic VLBI: Monitoring Global Change, Washington D.C., 22–26 April, 1991.

    Google Scholar 

  • C. Rocken, R. Anthes, S. Sokolovskiy, M. Exnerand, D. Hunt, R. Ware, M. Gorbunov, W. Schreiner, D. Feng, B. Herman, Y. Kuo, and X. Zou. Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102: 29849–29866, 1997.

    Google Scholar 

  • C. Rocken, Y.H. Kuo, W. Schreiner, D. Hunt, and S. Sokolovskiy. Cosmic system description. Atmospheric and Oceanic Science, 11 (1): 21–52, March 2000.

    Google Scholar 

  • S. Schaer. Mapping and predicting the Earth’s ionosphere using the Global Positioning System. PhD thesis, Bern University, Switzerland, 1999.

    Google Scholar 

  • S. Schaer, W. Gunter, and J. Feltens. Ionex: The ionosphere map exchange format version 1. In In J. M. Dow, J. Kouba, and T. Springer (Eds.), pages 233–247, Darmstadt, Germany, 1998. Proceeding of the IGS AC Workshop.

    Google Scholar 

  • L. Scherliess, R.W. Schunk, J.J. Sojka, and D.C. Thompson. Development of a physics-based reduced state Kalman filter for the ionosphere. Radio Sci., 39, 2004.

    Google Scholar 

  • W. Schreiner, S. Sokolovskiy, C. Rocken, and D. Hunt. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci., 34 (4): 949–966, 1999.

    Google Scholar 

  • G. Seeber. Satellite Geodesy, Foundations, Methods and Application. Walter de Gruyter, Berlin, New York, 1993.

    Google Scholar 

  • M. Sekido. Pulsar Astrometry by VLBI. PhD thesis, Department of Astronomical Science, School of Mathematical and Physical Science, The Graduate University for Advanced Studies, Mitaka, Tokyo, Japan, 2001.

    Google Scholar 

  • L. Sirovich and R. Everson. Management and analysis of large scientific datasets. Int. J. Supercomputer Appl., 6: 50–68, 1992.

    Google Scholar 

  • L. Sparks, Lijima B.A., Mannucci A.J., Pi X., and Wilson B.D. A new model for retrieving slant TEC corrections for wide area differential GPS. In 2000: Navigating into the New Millennium, pages 464–473, Anaheim, CA; United States, 26–28 Jan. 2000. Institute of Navigation National Technical Meeting.

    Google Scholar 

  • S. Todorova. Combination of space geodetic techniques for global mapping of the ionosphere. PhD thesis, Vienna University of Technology, Austria, 2008.

    Google Scholar 

  • S. Todorova, H. Schuh, and T. Hobiger. Using the global navigation satellite systems and satellite altimetry for combined global ionosphere maps. Adv. Space Res, 42: 727–736, 2007.

    Google Scholar 

  • A.J. Tucker and B.M. Fanin. Analysis of ionospheric contributions to the Doppler shift of CW signals from artificial satellites. J. Geophys. Res., 73: 4325–4334, 1968.

    Google Scholar 

  • R. Ware, D. Exner, M. Feng, K. Gorbunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Roken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anthes, S. Businger, and K. Trenberth. GPS sounding of the atmosphere from low earth orbit: preliminary results. Bull. Am. Meteor. Soc, 77: 19–40, 1996.

    Google Scholar 

  • D.E. Wells. Doppler satellite control. Technical Report 29, UNB, Fredricton, 1974.

    Google Scholar 

  • J. Wickert, G. Beyerle, R. Konig, S. Heise, L. Grunwaldt, G. Michalak, C. Reigber, and T. Schmidt. GPS radio occultation with CHAMP and GRACE: A first look at a new and promising satellite configuration for global atmospheric sounding. Annales Geophysicae, 23 (3): 653–658, 2005.

    Google Scholar 

  • J. Wickert, Ch. Reigber, G. Beyerle, R. König, Ch. Marquardt, T. Schmidt, L. Grunwaldt, R. Galas, T. Meehan, WG. Melbourne, and K. Hocke. Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett., 28: 3263–3266, 2001.

    Google Scholar 

  • P. Yin and C. N. Mitchell. Demonstration of the use of the doppler orbitography and radio positioning integrated by satellite (DORIS) measurements to validate GPS ionospheric imaging. Adv. Space Res., 48: 500–506, 2011.

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their heartfelt gratitude to Manuel Hernández-Pajares from the Research group of Astronomy and GEomatics (gAGE) of the Technical University of Catalonia (UPC)—Barcelona, and also to Michael Schmidt from the Deutsches Geodätisches Forschungsinstitut (DGFI)—Munich, for the revision of this part and their valuable advice for improving the script. The Austrian Science Fund (FWF Der Wissenschaftsfonds) is also deeply appreciated for funding projects VlbIonos (project P16136), COMBION (project P19564), MDION (project P22203), and GGOS Atmosphere (project P20902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi M. Alizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alizadeh, M.M., Wijaya, D.D., Hobiger, T., Weber, R., Schuh, H. (2013). Ionospheric Effects on Microwave Signals. In: Böhm, J., Schuh, H. (eds) Atmospheric Effects in Space Geodesy. Springer Atmospheric Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36932-2_2

Download citation

Publish with us

Policies and ethics