Skip to main content

Language Independent Extraction of Key Terms: An Extensive Comparison of Metrics

  • Conference paper
Agents and Artificial Intelligence (ICAART 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 358))

Included in the following conference series:

  • 872 Accesses

Abstract

In this paper twenty language independent statistically-based metrics used for key term extraction from any document collection are compared. Some of those metrics are widely used for this purpose. The others were recently created. Two different document representations are considered in our experiments. One is based on words and multi-words and the other is based on word prefixes of fixed length (5 characters for the experiments made). Prefixes were used for studying how morphologically rich languages, namely Portuguese and Czech behave when applying this other kind of representation. English is also studied taking it, as a non-morphologically rich language. Results are manually evaluated and agreement between evaluators is assessed using k-Statistics. The metrics based on Tf-Idf and Phi-square proved to have higher precision and recall. The use of prefix-based representation of documents enabled a significant precision improvement for documents written in Portuguese. For Czech, recall also improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. da Silva, J.F., Lopes, G.P.: A Document Descriptor Extractor Based on Relevant Expressions. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS (LNAI), vol. 5816, pp. 646–657. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. da Silva, J.F., Lopes, G.P.: Towards Automatic Building of Document Keywords. In: COLING 2010 - The 23rd International Conference on Computational Linguistics, Poster Volume, Pequim, pp. 1149–1157 (2010)

    Google Scholar 

  3. Teixeira, L., Lopes, G., Ribeiro, R.A.: Automatic Extraction of Document Topics. In: Camarinha-Matos, L.M. (ed.) DoCEIS 2011. IFIP AICT, vol. 349, pp. 101–108. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  5. da Silva, J.F., Lopes, G.P.: A Local Maxima Method and a Fair Dispersion Normalization for Extracting Multiword Units. In: Proceedings of the 6th Meeting on the Mathematics of Language, Orlando, pp. 369–381 (1999)

    Google Scholar 

  6. Jacquemin, C.: Spotting and discovering terms through natural language processing. MIT Press (2001)

    Google Scholar 

  7. Hulth, A.: Improved Automatic Keyword Extraction Given More Linguistic Knowledge. In: EMNLP 2003 Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 216–223. Association for Computational Linguistics, Stroudsburg (2003)

    Chapter  Google Scholar 

  8. Ngonga Ngomo, A.-C.: Knowledge-Free Discovery of Domain-Specific Multiword Units. In: Proceedings of the 2008 ACM Symposium on Applied Computing, SAC 2008, pp. 1561–1565. ACM, Fortaleza (2008), doi: http://doi.acm.org/10.1145/1363686.1364053

  9. Martínez-Fernández, J.L., García-Serrano, A., Martínez, P., Villena, J.: Automatic Keyword Extraction for News Finder. In: Nürnberger, A., Detyniecki, M. (eds.) AMR 2003. LNCS, vol. 3094, pp. 99–119. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Cigarrán, J.M., Peñas, A., Gonzalo, J., Verdejo, F.: Automatic Selection of Noun Phrases as Document Descriptors in an FCA-Based Information Retrieval System. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 49–63. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Liu, F., Pennell, D., Liu, F., Liu, Y.: Unsupervised Approaches for Automatic Keyword Extraction Using Meeting Transcripts. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pp. 620–628. Association for Computational Linguistics, Boulder (2009)

    Google Scholar 

  12. Katja, H., Manos, T., Edgar, M., Maarten, de R.: The impact of document structure on keyphrase extraction. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, pp. 1725–1728. ACM, Hong Kong (2009)

    Google Scholar 

  13. Mihalcea, R., Tarau, P.: TextRank: Bringing Order into Texts. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, Barcelona, Spain, pp. 404–411 (2004)

    Google Scholar 

  14. Turney, P.D.: Learning Algorithms for Keyphrase Extraction. Inf. Retr. 2(4), 303–336 (2000), doi:10.1023/a:1009976227802

    Article  Google Scholar 

  15. Lemnitzer, L., Monachesi, P.: Extraction and evaluation of keywords from Learning Objects - a multilingual approach. In: Proceedings of the Language Resources and Evaluation Conference (2008)

    Google Scholar 

  16. Matsuo, Y., Ishizuka, M.: Keyword Extraction from a single Document using word Co-Occurence Statistical Information. International Journal on Articial Intelligence Tools 13(1), 157–169 (2004)

    Article  Google Scholar 

  17. da Silva, J. F., Dias, G., Guilloré, S., Lopes, J.G. P.: Using LocalMaxs Algorithm for the Extraction of Contiguous and Non-contiguous Multiword Lexical Units. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 113–132. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Gomes, L.: Multi-Word Extractor (2009), http://hlt.di.fct.unl.pt/luis/multiwords/index.html

  19. Douglas McIlroy, M.: Suffix arrays (2007), http://www.cs.dartmouth.edu/~doug/sarray/

  20. Yamamoto, M., Church, K.W.: Using Suffix Arrays to Compute Term Frequency and Document Frequency for All Substrings in a Corpus. Computational Linguistics 27(1), 1–30 (2001)

    Article  Google Scholar 

  21. Everitt, B.S.: The Cambridge Dictionary of Statistics, 2nd edn. Cambridge University Press, New York (2002)

    MATH  Google Scholar 

  22. Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  23. Goldsmith, J.: Unsupervised learning of the morphology of a natural language. Computational Linguistiscs 27(2), 153–198 (2001)

    Article  MathSciNet  Google Scholar 

  24. Creutz, M., Lagus, K.: Unsupervised models for morpheme segmentation and morphology learning. ACM Trans. Speech Lang. Process. 4(1), 1–34 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Teixeira, L.F.S., Lopes, G.P., Ribeiro, R.A. (2013). Language Independent Extraction of Key Terms: An Extensive Comparison of Metrics. In: Filipe, J., Fred, A. (eds) Agents and Artificial Intelligence. ICAART 2012. Communications in Computer and Information Science, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36907-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36907-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36906-3

  • Online ISBN: 978-3-642-36907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics