Abstract
In this paper twenty language independent statistically-based metrics used for key term extraction from any document collection are compared. Some of those metrics are widely used for this purpose. The others were recently created. Two different document representations are considered in our experiments. One is based on words and multi-words and the other is based on word prefixes of fixed length (5 characters for the experiments made). Prefixes were used for studying how morphologically rich languages, namely Portuguese and Czech behave when applying this other kind of representation. English is also studied taking it, as a non-morphologically rich language. Results are manually evaluated and agreement between evaluators is assessed using k-Statistics. The metrics based on Tf-Idf and Phi-square proved to have higher precision and recall. The use of prefix-based representation of documents enabled a significant precision improvement for documents written in Portuguese. For Czech, recall also improved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
da Silva, J.F., Lopes, G.P.: A Document Descriptor Extractor Based on Relevant Expressions. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS (LNAI), vol. 5816, pp. 646–657. Springer, Heidelberg (2009)
da Silva, J.F., Lopes, G.P.: Towards Automatic Building of Document Keywords. In: COLING 2010 - The 23rd International Conference on Computational Linguistics, Poster Volume, Pequim, pp. 1149–1157 (2010)
Teixeira, L., Lopes, G., Ribeiro, R.A.: Automatic Extraction of Document Topics. In: Camarinha-Matos, L.M. (ed.) DoCEIS 2011. IFIP AICT, vol. 349, pp. 101–108. Springer, Heidelberg (2011)
Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34(1), 1–47 (2002)
da Silva, J.F., Lopes, G.P.: A Local Maxima Method and a Fair Dispersion Normalization for Extracting Multiword Units. In: Proceedings of the 6th Meeting on the Mathematics of Language, Orlando, pp. 369–381 (1999)
Jacquemin, C.: Spotting and discovering terms through natural language processing. MIT Press (2001)
Hulth, A.: Improved Automatic Keyword Extraction Given More Linguistic Knowledge. In: EMNLP 2003 Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 216–223. Association for Computational Linguistics, Stroudsburg (2003)
Ngonga Ngomo, A.-C.: Knowledge-Free Discovery of Domain-Specific Multiword Units. In: Proceedings of the 2008 ACM Symposium on Applied Computing, SAC 2008, pp. 1561–1565. ACM, Fortaleza (2008), doi: http://doi.acm.org/10.1145/1363686.1364053
Martínez-Fernández, J.L., García-Serrano, A., Martínez, P., Villena, J.: Automatic Keyword Extraction for News Finder. In: Nürnberger, A., Detyniecki, M. (eds.) AMR 2003. LNCS, vol. 3094, pp. 99–119. Springer, Heidelberg (2004)
Cigarrán, J.M., Peñas, A., Gonzalo, J., Verdejo, F.: Automatic Selection of Noun Phrases as Document Descriptors in an FCA-Based Information Retrieval System. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 49–63. Springer, Heidelberg (2005)
Liu, F., Pennell, D., Liu, F., Liu, Y.: Unsupervised Approaches for Automatic Keyword Extraction Using Meeting Transcripts. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pp. 620–628. Association for Computational Linguistics, Boulder (2009)
Katja, H., Manos, T., Edgar, M., Maarten, de R.: The impact of document structure on keyphrase extraction. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, pp. 1725–1728. ACM, Hong Kong (2009)
Mihalcea, R., Tarau, P.: TextRank: Bringing Order into Texts. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, Barcelona, Spain, pp. 404–411 (2004)
Turney, P.D.: Learning Algorithms for Keyphrase Extraction. Inf. Retr. 2(4), 303–336 (2000), doi:10.1023/a:1009976227802
Lemnitzer, L., Monachesi, P.: Extraction and evaluation of keywords from Learning Objects - a multilingual approach. In: Proceedings of the Language Resources and Evaluation Conference (2008)
Matsuo, Y., Ishizuka, M.: Keyword Extraction from a single Document using word Co-Occurence Statistical Information. International Journal on Articial Intelligence Tools 13(1), 157–169 (2004)
da Silva, J. F., Dias, G., Guilloré, S., Lopes, J.G. P.: Using LocalMaxs Algorithm for the Extraction of Contiguous and Non-contiguous Multiword Lexical Units. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 113–132. Springer, Heidelberg (1999)
Gomes, L.: Multi-Word Extractor (2009), http://hlt.di.fct.unl.pt/luis/multiwords/index.html
Douglas McIlroy, M.: Suffix arrays (2007), http://www.cs.dartmouth.edu/~doug/sarray/
Yamamoto, M., Church, K.W.: Using Suffix Arrays to Compute Term Frequency and Document Frequency for All Substrings in a Corpus. Computational Linguistics 27(1), 1–30 (2001)
Everitt, B.S.: The Cambridge Dictionary of Statistics, 2nd edn. Cambridge University Press, New York (2002)
Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Goldsmith, J.: Unsupervised learning of the morphology of a natural language. Computational Linguistiscs 27(2), 153–198 (2001)
Creutz, M., Lagus, K.: Unsupervised models for morpheme segmentation and morphology learning. ACM Trans. Speech Lang. Process. 4(1), 1–34 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Teixeira, L.F.S., Lopes, G.P., Ribeiro, R.A. (2013). Language Independent Extraction of Key Terms: An Extensive Comparison of Metrics. In: Filipe, J., Fred, A. (eds) Agents and Artificial Intelligence. ICAART 2012. Communications in Computer and Information Science, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36907-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-36907-0_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36906-3
Online ISBN: 978-3-642-36907-0
eBook Packages: Computer ScienceComputer Science (R0)