Skip to main content

Efficient Spatial Reasoning with Rectangular Cardinal Relations and Metric Constraints

  • Conference paper
Agents and Artificial Intelligence (ICAART 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 358))

Included in the following conference series:

  • 849 Accesses

Abstract

In many real-world applications of knowledge representation and reasoning formalisms, one needs to cope with a number of spatial aspects in an integrated and efficient way. In this paper, we focus our attention on the so-called Rectangular Cardinal Direction calculus for qualitative spatial reasoning on cardinal relations between rectangles whose sides are parallel to the axes of a fixed reference system. We show how to extend its convex tractable fragment with metric constraints preserving tractability. The resulting formalism makes it possible to efficiently reason about spatial knowledge specified by one qualitative constraint network and two metric networks (one for each spatial dimension). In particular, it allows one to represent definite or imprecise knowledge on directional relations between rectangles and to derive additional information about them, as well as to deal with metric constraints on the height/width of a rectangle or on the vertical/horizontal distance between the sides of two rectangles. We believe that the formalism features a good combination of simplicity, efficiency, and expressive power, making it adequate for spatial applications like, for instance, web-document query processing and automatic layout generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  2. Balbiani, P., Condotta, J.F., del Cerro, L.F.: A model for reasoning about bidimensional temporal relations. In: Proc. of KR 1998, pp. 124–130 (1998)

    Google Scholar 

  3. Baykan, C.A., Fox, M.D.: Spatial synthesis by disjunctive constraint satisfaction. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11(4), 245–262 (1997)

    Article  Google Scholar 

  4. Borning, A., Kuang-Hsu Lin, R., Marriott, K.: Constraint-based document layout for the web. Multimedia Syst. 8(3), 177–189 (2000)

    Article  MATH  Google Scholar 

  5. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Condotta, J.F.: The augmented interval and rectangle networks. In: Proc. of KR 2000, pp. 571–579 (2000)

    Google Scholar 

  7. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence 49(1-3), 61–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gatterbauer, W., Bohunsky, P.: Table extraction using spatial reasoning on the CSS2 visual box model. In: Proc. of AAAI 2006, pp. 1313–1318 (2006)

    Google Scholar 

  9. Gerevini, A., Cristani, M.: On finding a solution in temporal constraint satisfaction problems. In: Proc. of IJCAI 1997, vol. 2, pp. 1460–1465 (1997)

    Google Scholar 

  10. Goyal, R., Egenhofer, M.: Consistent queries over cardinal directions across different levels of detail. In: Proc. of DEXA 2000, pp. 876–880 (2000)

    Google Scholar 

  11. Gerevini, A., Renz, J.: Combining topological and size information for spatial reasoning. Artificial Intelligence 137(1-2), 1–42 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, W., Li, S.: Reasoning about cardinal directions between extended objects: The NP-hardness result. Artificial Intelligence 175(18), 2155–2169 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, W., Li, S., Renz, J.: Combining RCC-8 with qualitative direction calculi: Algorithms and complexity. In: Proc. of IJCAI 2009, pp. 854–859 (2009)

    Google Scholar 

  14. Liu, W., Zhang, X., Li, S., Ying, M.: Reasoning about cardinal directions between extended objects. Artificial Intelligence 174, 951–983 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mackworth, A.K.: Consistency in Networks of Relations. Artificial Intelligence 8(1), 99–118 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meiri, I.: Combining qualitative and quantitative constraints in temporal reasoning. Artificial Intelligence 87(1-2), 343–385 (1996)

    Article  MathSciNet  Google Scholar 

  17. Montanari, A., Navarrete, I., Sciavicco, G., Tonon, A.: A tractable formalism for combining rectangular cardinal relations with metric constraints. In: Proc. of ICAART 2012, pp. 154–163 (2012)

    Google Scholar 

  18. Navarrete, I., Morales, A., Sciavicco, G., Cardenas, M.A.: Spatial reasoning with rectangular cardinal relations utility package for rectangular cardinal relations. Technical Report TR-DIIC 2/11, Universidad de Murcia (2011)

    Google Scholar 

  19. Navarrete, I., Sciavicco, G.: Spatial reasoning with rectangular cardinal direction relations. In: Proc. of the ECAI 2006 Workshop on Spatial and Temporal Reasoning, pp. 1–10 (2006)

    Google Scholar 

  20. Oro, E., Ruffolo, M., Staab, S.: SXPath - extending XPath towards spatial querying on web documents. Proc. of VLDB 2010 4(2), 129–140 (2010)

    Google Scholar 

  21. Papadias, D., Theodoridis, Y.: Spatial relations, minimum bounding rectangles, and spatial data structures. International Journal of Geographical Information Science 11(2), 111–138 (1997)

    Article  Google Scholar 

  22. Skiadopoulos, S., Koubarakis, M.: On the consistency of cardinal directions constraints. Artificial Intelligence 163(1), 91–135 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. van Beek, P.: Reasoning about qualitative temporal information. Artificial Intelligence 58(1-3), 297–326 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. van Beek, P., Cohen, R.: Exact and approximate reasoning about temporal relations. Computation Intelligence 6(3), 132–147 (1990)

    Article  Google Scholar 

  25. Vilain, M.B., Kautz, H.: Constraint propagation algorithms for temporal reasoning. In: Proc. of AAAI 1986, pp. 377–382 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montanari, A., Navarrete, I., Sciavicco, G., Tonon, A. (2013). Efficient Spatial Reasoning with Rectangular Cardinal Relations and Metric Constraints. In: Filipe, J., Fred, A. (eds) Agents and Artificial Intelligence. ICAART 2012. Communications in Computer and Information Science, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36907-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36907-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36906-3

  • Online ISBN: 978-3-642-36907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics