Retrieving Topological Information for Mobile Robots Provided with Grid Maps

  • David Portugal
  • Rui P. Rocha
Part of the Communications in Computer and Information Science book series (CCIS, volume 358)


In the context of mobile robotics, it is crucial for the robot to have a consistent representation of the surrounding area. However, common grid maps used in robotics do not provide any evidence as to connectivity, making it harder to find appropriate paths to particular points on the site. Therefore, abstracting the environment where mobile robots carry out some mission can be of a great benefit.

Topological maps have been increasingly used in robotics, because they are fairly simple and an extremely intuitive representation for tasks that involve path planning. In this article, a method for retrieving a topological map from an a priori generic grid map of the environment is presented. Beyond extracting a 2D diagram which portrays the topology of the infra-structure, the focus is placed on obtaining graph-like data related to the connectivity of important points in the area, that can be passed on to robots or to a centralized planner, in order to assist the navigation task. The proposed method is further elaborated in detail and its results prove the simplicity, accuracy and efficiency of the approach.


Robot navigation Graphs Topological maps Voronoi diagrams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thrun, S.: Learning maps for indoor mobile robot navigation. Artificial Intelligence 99, 21–71 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    Zimmer, U., Fischer, C., Von Puttkamer, E.: Navigation on topologic feature-maps. In: 3rd International Conference on Fuzzy Logic, Neural Nets and Soft Computing, Fukuoka, Japan, pp. 131–132 (1994)Google Scholar
  3. 3.
    Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: Map validation and robot self-location in a graph-like world. Robotics and Autonomous Systems 22(2), 159–178 (1997)CrossRefGoogle Scholar
  4. 4.
    Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: Topological exploration with multiple robots. In: 7th International Symposium on Robotics with Applications (ISORA 1998), Anchorage, Alaska, May 10-14 (1998)Google Scholar
  5. 5.
    Ferreira, F., Davim, L., Rocha, R., Dias, J., Santos, V.: Presenting a technique for registering images and range data using a topological representation of a path within an environment. J. of Automation, Mobile Robotics & Intelligent Systems 1(3), 47–55 (2007)Google Scholar
  6. 6.
    Portugal, D., Rocha, R.: Msp algorithm: Multi-robot patrolling based on territory allocation using balanced graph partitioning. In: 25th ACM Symposium on Applied Computing, SAC 2010, Sierre, Switzerland, pp. 1271–1276 (2010)Google Scholar
  7. 7.
    Thrun, S., Bugard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3d mapping. In: Int. Conf. on Robotics and Automation, San Francisco, pp. 321–328 (2000)Google Scholar
  8. 8.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  9. 9.
    Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik 134, 198–287 (1908)zbMATHGoogle Scholar
  10. 10.
    Wallgrün, J.: Hierarchical voronoi-based route graph representations for planning, spatial reasoning, and communication. In: 4th Int. Cognitive Robotics Workshop (CogRob 2004), pp. 64–69 (2004)Google Scholar
  11. 11.
    Beeson, P., Jong, N., Kuiper, B.: Towards autonomous topological place detection using the extended voronoi graph. In: Int. Conf. on Robotics and Automation (ICRA 2005), Barcelona, pp. 4373–4379 (2005)Google Scholar
  12. 12.
    Kolling, A., Carpin, S.: Extracting surveillance graphs from robot maps. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), Nice, France, pp. 2323–2328 (2008)Google Scholar
  13. 13.
    Delaunay, B.: Sur la sphére vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7(6), 793–800 (1934)Google Scholar
  14. 14.
    Katsilieris, F., Lindhé, M., Dimarogonas, D., Ögren, P., Johansson, K.: Demonstration of multi-robot search and secure. In: Int. Conf. on Robotics and Automation (ICRA 2010), Anchorage, Alaska, USA (2010)Google Scholar
  15. 15.
    Fazli, P., Davoodi, A., Pasquier, P., Mackworth, A.: Fault-tolerant multi-robot area coverage with limited visibility. In: 2010 IEEE Int. Conf. on Robotics and Automation (ICRA 2010), Anchorage, Alaska, USA (2010)Google Scholar
  16. 16.
    Lozano-Pérez, T., Wesley, M.: An algorithm for planning collision-free paths among polyhedral obstacles. Communications of the ACM 22(10), 560–570 (1979)CrossRefGoogle Scholar
  17. 17.
    Ko, B., Song, J., Lee, S.: Realtime building of thinning-based topological map. In: lnt. Conf. on Intelligent Robots and Systems, Sandal, Japan (2004)Google Scholar
  18. 18.
    Szabó, R.: Topological navigation of simulated robots using occupancy grid. Int. J. of Advanced Robotic Systems 1(3), 201–206 (2004)Google Scholar
  19. 19.
    Machado, A.: Patrulha multiagente: Uma análise empírica e sistemática. Master’s thesis, Centro de Informática, Universidade Federal de Pernambuco (UFPE), Recife, Brasil (2002)Google Scholar
  20. 20.
    Reinhard, D.: Graph Theory, electronic edition. Springer, Heidelberg (2010)Google Scholar
  21. 21.
    Portugal, D., Rocha, R.P.: On the performance and scalability of multi-robot patrolling algorithms. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR 2011), Kyoto, Japan, November 1-5, pp. 50–55 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David Portugal
    • 1
  • Rui P. Rocha
    • 1
  1. 1.Institute of Systems and Robotics, Department of Electrical and Computer EngineeringUniversity of CoimbraCoimbraPortugal

Personalised recommendations