Achieving Net Feedback Gain in the Linear-Deterministic Butterfly Network with a Full-Duplex Relay

  • Anas Chaaban
  • Aydin Sezgin
  • Daniela Tuninetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7777)


A symmetric butterfly network (BFN) with a full-duplex relay operating in a bi-directional fashion for feedback is considered. This network is relevant for a variety of wireless networks, including cellular systems dealing with cell-edge users. Upper bounds on the capacity region of the general memoryless BFN with feedback are derived based on cut-set and cooperation arguments and then specialized to the linear deterministic BFN with relay-source feedback. It is shown that the upper bounds are achievable using combinations of the compute-forward strategy and the classical decode-and-forward strategy, thus fully characterizing the capacity region. It is shown that net rate gains are possible in certain parameter regimes.


butterfly network interference relay channel with feedback capacity inner bound outer bound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlswede, R.: Multi-way communication channels. In: Proc. of 2nd International Symposium on Info. Theory, Tsahkadsor, Armenian S.S.R., pp. 23–52 (1971)Google Scholar
  2. 2.
    Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow. IEEE Trans. on Inf. Theory 46(4), 1204–1216 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Avestimehr, A.S., Diggavi, S., Tse, D.: A deterministic approach to wireless relay networks. In: Proc. of Allerton Conference (2007)Google Scholar
  4. 4.
    Avestimehr, A.S., Ho, T.: Approximate capacity of the symmetric half-duplex Gaussian butterfly network. In: Proc. of the IEEE Information Theory Workshop (ITW), pp. 311–315 (2009)Google Scholar
  5. 5.
    Avestimehr, A.S., Sezgin, A., Tse, D.: Capacity of the two-way relay channel within a constant gap. European Trans. in Telecommunications (2009)Google Scholar
  6. 6.
    Carleial, A.B.: Interference channels. IEEE Trans. on Inf. Theory 24(1), 60–70 (1978)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chaaban, A., Sezgin, A.: Achievable rates and upper bounds for the Gaussian interference relay channel. IEEE Trans. on Inf. Theory 58(7), 4432–4461 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cover, T.M., El-Gamal, A.: Capacity theorems for the relay channel. IEEE Trans. on Inf. Theory IT-25(5), 572–584 (1979)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. John Wiley and Sons, Inc. (2006)Google Scholar
  10. 10.
    Gamal, A.E., Kim, Y.H.: Network Information Theory. Cambridge University Press (2011)Google Scholar
  11. 11.
    Han, T.S., Kobayashi, K.: A new achievable rate region for the interference channel. IEEE Trans. on Inf. Theory IT-27(1), 49–60 (1981)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kim, S., Devroye, N., Mitran, P., Tarokh, V.: Comparisons of bi-directional relaying protocols. In: Proc. of the IEEE Sarnoff Symposium, Princeton, NJ (2008)Google Scholar
  13. 13.
    Mariç, I., Dabora, R., Goldsmith, A.J.: Relaying in the presence of interference: achievable rates, interference forwarding, and outer bounds. IEEE Trans. on Info. Theory 58(7), 4342–4354 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Narayanan, K., Wilson, M.P., Sprintson, A.: Joint physical layer coding and network coding for bi-directional relaying. In: Proc. of the Forty-Fifth Allerton Conference, Illinois (2007)Google Scholar
  15. 15.
    Nazer, B., Gastpar, M.: Compute-and-forward: harnessing interference through structured codes. IEEE Trans. on Inf. Theory 57(10), 6463–6486 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rankov, B., Wittneben, A.: Spectral efficient signaling for half-duplex relay channels. In: Proc. of the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA (2005)Google Scholar
  17. 17.
    Sahin, O., Erkip, E.: Achievable rates for the Gaussian interference relay channel. In: Proc. of 2007 GLOBECOM Communication Theory Symposium, Washington D.C (2007)Google Scholar
  18. 18.
    Tuninetti, D.: An outer bound for the memoryless two-user interference channel with general cooperation. In: Proc. of the IEEE Information Theory Workshop (ITW), Lausanne (2012)Google Scholar
  19. 19.
    Yang, E., Tuninetti, D.: Interference channels with source cooperation in the strong cooperation regime: symmetric capacity to within 2 bits/s/Hz with dirty paper coding. In: Proc. of 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anas Chaaban
    • 1
  • Aydin Sezgin
    • 1
  • Daniela Tuninetti
    • 2
  1. 1.Ruhr-University of BochumBochumGermany
  2. 2.University of Illinois at ChicagoChicagoUSA

Personalised recommendations