Skip to main content

Generic Algorithms for Factoring Strings

  • Chapter
  • 2117 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7777)

Abstract

In this paper we describe algorithms for factoring words over sets of strings known as circ-UMFFs, generalizations of the well-known Lyndon words based on lexorder, whose properties were first studied in 1958 by Chen, Fox and Lyndon. In 1983 Duval designed an elegant linear-time sequential (RAM) Lyndon factorization algorithm; a corresponding parallel (PRAM) algorithm was described in 1994 by Daykin, Iliopoulos and Smyth. In 2003 Daykin and Daykin introduced various circ-UMFFs, including one based on V-words and V-ordering; in 2011 linear string comparison and sequential factorization algorithms based on V-order were given by Daykin, Daykin and Smyth. Here we first describe generic RAM and PRAM algorithms for factoring a word over any circ-UMFF; then we show how to customize these generic algorithms to yield optimal parallel Lyndon-like V-word factorization.

Keywords

  • circ-UMFF
  • complexity
  • factor
  • generic
  • lexicographic order
  • Lyndon word
  • optimal
  • parallel algorithm
  • PRAM
  • RAM
  • sequential algorithm
  • V-order
  • V-word

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breslauer, D., Grossi, R., Mignosi, F.: Simple Real-Time Constant-Space String Matching. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 173–183. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  2. Brlek, S., Lachaud, J.-O., Provençal, X., Reutenauer, C.: Lyndon + Christoffel = digitally convex. Pattern Recognition 42(10), 2239–2246 (2009)

    CrossRef  MATH  Google Scholar 

  3. Brlek, S., Melançon, G., Paquin, G.: Properties of the extremal infinite smooth words. Discrete Math. Theor. Comput. Sci. 9(2), 33–50 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Chemillier, M.: Periodic musical sequences and Lyndon words. Soft Computing - A Fusion of Foundations, Methodologies and Applications 8(9), 611–616 (2004) ISSN 1432-7643 (Print) 1433-7479 (Online)

    Google Scholar 

  5. Crochemore, M., Désarménien, J., Perrin, D.: A note on the Burrows-Wheeler transformation. Theoret. Comput. Sci. 332(1-3), 567–572 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus, IV — the quotient groups of the lower central series. Ann. Math. 68, 81–95 (1958)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Crochemore, M., Perrin, D.: Two-way string-matching. J. Assoc. Comput. Mach. 38(3), 651–675 (1991)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Chemillier, M., Truchet, C.: Computation of words satisfying the “rhythmic oddity property” (after Simha Arom’s works). Inf. Proc. Lett. 86, 255–261 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Daykin, D.E.: Algorithms for the Lyndon unique maximal factorization. J. Combin. Math. Combin. Comput. 77, 65–74 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Danh, T.-N., Daykin, D.E.: The structure of V-order for integer vectors. In: Hilton, A.J.W. (ed.) Congressus Numerantium, vol. 113, pp. 43–53. Utilitas Mat. Pub. Inc., Winnipeg (1996)

    Google Scholar 

  11. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)

    MATH  Google Scholar 

  12. Daykin, D.E., Daykin, J.W.: Lyndon-like and V-order factorizations of strings. J. Discrete Algorithms 1, 357–365 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Daykin, D.E., Daykin, J.W.: Properties and construction of unique maximal factorization families for strings. Internat. J. Found. Comput. Sci. 19(4), 1073–1084 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Daykin, D.E., Daykin, J.W., (Bill) Smyth, W.F.: Combinatorics of Unique Maximal Factorization Families (UMFFs). Fund. Inform. 97(3), 295–309 (2009); Special Issue on Stringology, Janicki, R., Puglisi, S.J., Rahman, M.S. (eds.)

    Google Scholar 

  15. Daykin, D.E., Daykin, J.W., Smyth, W.F.: String Comparison and Lyndon-Like Factorization Using V-Order in Linear Time. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 65–76. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  16. Daykin, D.E., Daykin, J.W., Smyth, W.F.: A linear partitioning algorithm for Hybrid Lyndons using V-order. Theoret. Comput. Sci. (in press, 2012), doi:10.1016/j.tcs.2012.02.001

    Google Scholar 

  17. Daykin, J.W., Iliopoulos, C.S., Smyth, W.F.: Parallel RAM algorithms for factorizing words. Theoret. Comput. Sci. 127(1), 53–67 (1994)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Daykin, J.W., Smyth, W.F.: A bijective variant of the Burrows-Wheeler transform using V-Order (submitted)

    Google Scholar 

  19. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4, 363–381 (1983)

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. Gil, J., Scott, D.A.: A bijective string sorting transform (submitted)

    Google Scholar 

  21. Iliopoulos, C.S., Smyth, W.F.: Optimal algorithms for computing the canonical form of a circular string. Theoret. Comput. Sci. 92(1), 87–105 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. JaJa, J.: Introduction to Parallel Algorithms. Addison-Wesley (1992) ISBN 0-201-54856-9

    Google Scholar 

  23. Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Proc. Stringology, pp. 65–79 (2009)

    Google Scholar 

  24. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983), 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  25. http://developer.nvidia.com/cuda

  26. Perret, L.: A chosen ciphertext attack on a public key cryptosystem based on Lyndon words. In: Proceedings of International Workshop on Coding and Cryptography (WCC 2005), pp. 235–244 (2005)

    Google Scholar 

  27. Reutenauer, C.: Free Lie Algebras, London Math. Soc. Monographs, New Ser., vol. 7. Oxford University Press (1993)

    Google Scholar 

  28. Smyth, B.: Computing Patterns in Strings. Pearson (2003)

    Google Scholar 

  29. Siromoney, R., Matthew, L., Dare, V.R., Subramanian, K.G.: Infinite Lyndon words. Inform. Process. Lett. 50, 101–104 (1994)

    CrossRef  MathSciNet  MATH  Google Scholar 

  30. http://www.umiacs.umd.edu/~vishkin/index.shtml

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daykin, D.E., Daykin, J.W., Iliopoulos, C.S., Smyth, W.F. (2013). Generic Algorithms for Factoring Strings. In: Aydinian, H., Cicalese, F., Deppe, C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol 7777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36899-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36899-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36898-1

  • Online ISBN: 978-3-642-36899-8

  • eBook Packages: Computer ScienceComputer Science (R0)