Abstract
In this paper we describe algorithms for factoring words over sets of strings known as circ-UMFFs, generalizations of the well-known Lyndon words based on lexorder, whose properties were first studied in 1958 by Chen, Fox and Lyndon. In 1983 Duval designed an elegant linear-time sequential (RAM) Lyndon factorization algorithm; a corresponding parallel (PRAM) algorithm was described in 1994 by Daykin, Iliopoulos and Smyth. In 2003 Daykin and Daykin introduced various circ-UMFFs, including one based on V-words and V-ordering; in 2011 linear string comparison and sequential factorization algorithms based on V-order were given by Daykin, Daykin and Smyth. Here we first describe generic RAM and PRAM algorithms for factoring a word over any circ-UMFF; then we show how to customize these generic algorithms to yield optimal parallel Lyndon-like V-word factorization.
Keywords
- circ-UMFF
- complexity
- factor
- generic
- lexicographic order
- Lyndon word
- optimal
- parallel algorithm
- PRAM
- RAM
- sequential algorithm
- V-order
- V-word
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Breslauer, D., Grossi, R., Mignosi, F.: Simple Real-Time Constant-Space String Matching. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 173–183. Springer, Heidelberg (2011)
Brlek, S., Lachaud, J.-O., Provençal, X., Reutenauer, C.: Lyndon + Christoffel = digitally convex. Pattern Recognition 42(10), 2239–2246 (2009)
Brlek, S., Melançon, G., Paquin, G.: Properties of the extremal infinite smooth words. Discrete Math. Theor. Comput. Sci. 9(2), 33–50 (2007)
Chemillier, M.: Periodic musical sequences and Lyndon words. Soft Computing - A Fusion of Foundations, Methodologies and Applications 8(9), 611–616 (2004) ISSN 1432-7643 (Print) 1433-7479 (Online)
Crochemore, M., Désarménien, J., Perrin, D.: A note on the Burrows-Wheeler transformation. Theoret. Comput. Sci. 332(1-3), 567–572 (2005)
Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus, IV — the quotient groups of the lower central series. Ann. Math. 68, 81–95 (1958)
Crochemore, M., Perrin, D.: Two-way string-matching. J. Assoc. Comput. Mach. 38(3), 651–675 (1991)
Chemillier, M., Truchet, C.: Computation of words satisfying the “rhythmic oddity property” (after Simha Arom’s works). Inf. Proc. Lett. 86, 255–261 (2003)
Daykin, D.E.: Algorithms for the Lyndon unique maximal factorization. J. Combin. Math. Combin. Comput. 77, 65–74 (2011)
Danh, T.-N., Daykin, D.E.: The structure of V-order for integer vectors. In: Hilton, A.J.W. (ed.) Congressus Numerantium, vol. 113, pp. 43–53. Utilitas Mat. Pub. Inc., Winnipeg (1996)
de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)
Daykin, D.E., Daykin, J.W.: Lyndon-like and V-order factorizations of strings. J. Discrete Algorithms 1, 357–365 (2003)
Daykin, D.E., Daykin, J.W.: Properties and construction of unique maximal factorization families for strings. Internat. J. Found. Comput. Sci. 19(4), 1073–1084 (2008)
Daykin, D.E., Daykin, J.W., (Bill) Smyth, W.F.: Combinatorics of Unique Maximal Factorization Families (UMFFs). Fund. Inform. 97(3), 295–309 (2009); Special Issue on Stringology, Janicki, R., Puglisi, S.J., Rahman, M.S. (eds.)
Daykin, D.E., Daykin, J.W., Smyth, W.F.: String Comparison and Lyndon-Like Factorization Using V-Order in Linear Time. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 65–76. Springer, Heidelberg (2011)
Daykin, D.E., Daykin, J.W., Smyth, W.F.: A linear partitioning algorithm for Hybrid Lyndons using V-order. Theoret. Comput. Sci. (in press, 2012), doi:10.1016/j.tcs.2012.02.001
Daykin, J.W., Iliopoulos, C.S., Smyth, W.F.: Parallel RAM algorithms for factorizing words. Theoret. Comput. Sci. 127(1), 53–67 (1994)
Daykin, J.W., Smyth, W.F.: A bijective variant of the Burrows-Wheeler transform using V-Order (submitted)
Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4, 363–381 (1983)
Gil, J., Scott, D.A.: A bijective string sorting transform (submitted)
Iliopoulos, C.S., Smyth, W.F.: Optimal algorithms for computing the canonical form of a circular string. Theoret. Comput. Sci. 92(1), 87–105 (1992)
JaJa, J.: Introduction to Parallel Algorithms. Addison-Wesley (1992) ISBN 0-201-54856-9
Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Proc. Stringology, pp. 65–79 (2009)
Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983), 2nd edn. Cambridge University Press, Cambridge (1997)
Perret, L.: A chosen ciphertext attack on a public key cryptosystem based on Lyndon words. In: Proceedings of International Workshop on Coding and Cryptography (WCC 2005), pp. 235–244 (2005)
Reutenauer, C.: Free Lie Algebras, London Math. Soc. Monographs, New Ser., vol. 7. Oxford University Press (1993)
Smyth, B.: Computing Patterns in Strings. Pearson (2003)
Siromoney, R., Matthew, L., Dare, V.R., Subramanian, K.G.: Infinite Lyndon words. Inform. Process. Lett. 50, 101–104 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Daykin, D.E., Daykin, J.W., Iliopoulos, C.S., Smyth, W.F. (2013). Generic Algorithms for Factoring Strings. In: Aydinian, H., Cicalese, F., Deppe, C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol 7777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36899-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-36899-8_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36898-1
Online ISBN: 978-3-642-36899-8
eBook Packages: Computer ScienceComputer Science (R0)